14 resultados para treatment resistance

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biological detergents are now routinely used in domestic laundry because the enzymes they contain provide the added benefit of low temperature washes with improved cleaning performance. One of the key enzymes found in these detergents are proteases, which if exposed to natural protein fibres such as wool or silk can cause irreversible damage, leading to loss of fabric strength, shape and poor colour fastness. Transglutaminases (TGases) are protein cross-linking enzymes capable of adding tensile strength to wool proteins, and as a consequence are capable of remediating the damage caused by previous chemical treatments, and more importantly, by proteases. In this paper we treated dyed wool fabric with TGase and then washed the fabric with biological and non-biological detergents to investigate whether TGases would protect wool garments from damage by the undue use of biological detergents in domestic laundry. We demonstrate using different cycles of detergent washes containing biological and non-biological detergents and different TGase treatments, that wool fabric treated previously with TGase release less dye into the washing liquor and in addition maintain fabric strength at levels greater than the washed controls. As a consequence, wool garments previously treated with TGase are likely to have increased resistance to domestic washing and thus provide increased longevity. © 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2-diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes. © 2004 Blackwell Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity and insulin resistance are important risk factors for atherosclerosis, and elevated level of plasma NEFA is a common feature in individuals with obesity and insulin resistance. Palmitate, one of the most abundant non-esterified SFA in plasma, has been reported to induce insulin resistance in adipose tissues and skeletal muscles and to cause an increased inflammatory response in monocytes. The present study investigated whether palmitate can induce insulin resistance in monocytes and its effect on monocyte adhesion molecular expression (CD11b). Insulin resistance was measured by in vitro uptake of insulin-stimulated 3H-labelled 2-deoxy-D-glucose into THP-1 cells, cell surface CD11b expression was measured by flow cytometry. The data showed that palmitate-induced insulin resistance in THP-1 monocytes was concentration and time dependent (Figure 1). The insulin-stimulated glucose uptake was significantly decreased in cells treated with 300 mM-palmitate compared with control cells (P<0.001) and was observed within 6 h, but was not a result of palmitate toxicity. There was no significant increase in caspase 3 activation (P>0.05). Treatment with 300 mM-palmitate for 24 h also caused a significant increase in surface CD11b expression in both U937 and THP-1 monocytic cell lines and human primary monocytes compared with the control (P<0.001). Both these effects were inhibited by co-incubation with Fumonisin B1, an inhibitor of de novo ceramide synthesis. In conclusion, these data show that palmitate, at physiological concentrations, can cause insulin resistance in monocytes and increase monocyte surface integrin CD11b expression, which is in part the result of the synthesis of ceramide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori is one of the most common pathogenic bacterial infections, colonising an estimated half of all humans. It is associated with the development of serious gastroduodenal disease - including peptic ulcers, gastric lymphoma and acute chronic gastritis. Current recommended regimes are not wholly effective and patient compliance, side-effects and bacterial resistance can be problematic. Drug delivery to the site of residence in the gastric mucosa may improve efficacy of the current and emerging treatments. Gastric retentive delivery systems potentially allow increased penetration of the mucus layer and therefore increased drug concentration at the site of action. Proposed gastric retentive systems for the enhancement of local drug delivery include floating systems, expandable or swellable systems and bioadhesive systems. Generally, problems with these formulations are lack of specificity, limited to mucus turnover or failure to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucus-epithelial interface. This review appraises gastroretentive delivery strategies specifically with regard to their application as a delivery system to target Helicobacter. As drug-resistant strains emerge, the development of a vaccine to eradicate and prevent reinfection is an attractive proposition. Proposed prophylactic and therapeutic vaccines have been delivered using a number of mucosal routes using viral and non-viral vectors. The delivery form, inclusion of adjuvants, and delivery regime will influence the immune response generated. © 2005 Bentham Science Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus epidermidis are common Gram-positive bacteria and are responsible for a number of life-threatening nosocomial infections. Treatment of S. epidermidis infection is problematic because the organism is usually resistant to many antibiotics. The high degree of resistance of this organism to a range of antibiotics and disinfectants is widely known. The aims of this thesis were to investigate and evaluate the susceptibility of isolates of S. epidermidis from various infections to chlorhexidine (CHX) and to other disinfectants such as benzalkonium chloride (BKC), triclosan (TLN) and povidone-iodine (PI). In addition, the mechanisms of resistance of S. epidermidis to chlorhexidine (the original isolates and strains adapted to chlorhexidine by serial passage) were examined and co-resistance to clinically relevant antibiotics investigated. In 3 of the 11 S. epidermidis strains passaged in increasing concentrations of chlorhexidine, resistance to the disinfectant arose (16-fold). These strains were examined further, each showing stable chlorhexidine resistance. Co-resistance to other disinfectants such as BKC, TLN and PI and changes in cell surface hydrophobicity were observed. Increases in resistance were accompanied by an increase in the proportion of neutral lipids and phospholipids in the cell membrane. This increase was most marked in diphosphatidylglycerol. These observations suggest that some strains of S. epidermidis can become resistant to chlorhexidine and related disinfectants/antiseptics by continual exposure. The mechanisms of resistance appear to be related to changes in membrane lipid compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the effect of the two most abundant FFA in plasma – palmitate and oleate – on insulin sensitivity and vascular function (monocyte phenotype and adhesion to endothelium) using in vitro cell culture models and Wistar rats. Palmitate at 300µM for 6h induced insulin resistance in THP-1 monocytes and L6 monocytes. The ceramide synthesis pathway partly accounted for the palmitate-induced insulin resistance in THP-1 monocytes but not for L6 myotubes. Oleate treatment did not induce insulin resistance in either cell type and co-incubation with oleate protected cells from palmitate-induced insulin resistance. Palmitate at 300µN for 24h significantly increased cell surface CD11b and CD36 expression in U937 monocytes. The increase in CD11b and CD36 expression was effectively inhibited by Fumonisin B1, an inhibitor of ceramide synthesis. Oleate treatment did not show any effect on CD11b and CD36 expression and co-incubation with oleate antagonised the effect of palmitate on CD11b and CD36 expression in U937 monocytes. The increase in CD11b expression did not affect U937 monocyte adhesion to ICAM-1. Treating Wistar rats with palmitate for 6h caused a transient delay in glucose disposal and an increase in adhesion of U937 monocytes to the aortic endothelium, particularly at bifurcations. In conclusion, the present study demonstrates that the saturated free fatty acid palmitate induces insulin resistance and a pro-atherogenic phenotype for monocytes, whereas the unsaturated free fatty acid oleate does not. In vivo studies also confirmed that palmitate induces insulin resistance and an increase in monocyte adhesion to aorta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metformin is an anti-hyperglycaemic agent widely used in the treatment of type 2 diabetes. It counters insulin resistance through insulin-dependent and -independent effects on cellular nutrient and energy metabolism, improving glycaemic control without weight gain and without increasing the risk of hypoglycaemia. Metformin can also benefit several risk factors for vascular disease independently of glycaemic control. In subjects with metabolic syndrome, metformin improves prognosis. It decreases progression of impaired glucose tolerance to type 2 diabetes, assists weight reduction especially in conjunction with lifestyle management and exerts other potentially favourable cardiovascular effects. For example, metformin can modestly improve the lipid profile in some dyslipidaemic individuals, reduce pro-inflammatory cytokines and monocyte adhesion molecules and decrease advanced glycation end products. Metformin can also improve parameters of endothelial function in the macro- and micro-vasculature, indicating lower athero-thrombotic risk, but it does not appear to reduce blood pressure. In normoglycaemic individuals with risk factors for diabetes and in women with polycystic ovary syndrome there is evidence that metformin can defer or prevent the development of diabetes. Thus, metformin offers beneficial effects to delay the onset and reverse or reduce the progression of many of the metabolic features and cardiovascular risk factors associated with metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been suggested to be a key player in the progression and metastasis of chemoresistant breast cancer. One of the foremost survival signalling pathways implicated in causing drug resistance in breast cancer is the constitutive activation of NFκB (Nuclear Factor -kappa B) induced by TG2. This study provides a mechanism by which TG2 constitutively activates NFκB which in turn confers chemoresistance to breast cancer cells against doxorubicin. Breast cancer cell lines with varying expression levels of TG2 as well as TG2 null breast cancer cells transfected with TG2 were used as the major cell models for this study. This study made use of cell permeable and impermeable TG2 inhibitors, specific TG2 and Rel A/ p65 targeting siRNA, TG2 functional blocking antibodies, IKK inhibitors and a specific targeting peptide against Rel A/p65 to investigate the pathway of activation involved in the constitutive activation of NFκB by TG2 leading to drug resistance. Crucial to the activation of Rel A/p65 and drug resistance in the breast cancer cells is the interaction between the complex of IκBα and Rel A/p65 with TG2 which results in the dimerization of Rel A/p65 and polymerization of IκBα. The association of TG2 with the IκBα-NFκB complex was determined to be independent of IKKα/β function. The polymerized IκBα is degraded in the cytoplasm by the μ-calpain pathway which allows the cross linked Rel A/ p65 dimers to translocate into the nucleus. Using R283 and ZDON (cell permeable TG2 activity inhibitors) and specific TG2 targeting siRNA, the Rel A/ p65 dimer formation could be inhibited. Co-immunoprecipitation studies confirmed that the phosphorylation of the Rel A/p65 dimers at the Ser536 residue by IKKε took place in the cell nucleus. Importantly, this study also investigated the transcriptional regulation of the TGM2 gene by the pSer536 Rel A/ p65 dimer and the importance of this TG2-NFκB feedback loop in conferring drug resistance to breast cancer cells. This data provides evidence that TG2 could be a key therapeutic target in the treatment of chemoresistant breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Static mechanical properties of 2124 Al/SiCp MMC have been measured as a function of solution temperature and time. An optimum solution treatment has been established which produces significant improvements in static mechanical properties and fatigue crack growth resistance over conventional solution treatments. Increasing the solution treatment parameters up to the optimum values improves the mechanical properties because of intermetallic dissolution, improved solute and GPB zone strengthening and increased matrix dislocation density. Increasing the solution treatment parameters beyond the optimum values results in a rapid reduction in mechanical properties due to the formation of gas porosity and surface blisters. The optimum solution treatment improves tensile properties in the transverse orientation to a greater extent than in the longitudinal orientation and this results in reduced anisotropy. © 1996 Elsevier Science Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incretin hormone glucagon-like peptide-1(7-36)amide (GLP-1) has been deemed of considerable importance in the regulation of blood glucose. Its effects, mediated through the regulation of insulin, glucagon, and somatostatin, are glucose-dependent and contribute to the tight control of glucose levels. Much enthusiasm has been assigned to a possible role of GLP-1 in the treatment of type 2 diabetes. GLIP-l's action unfortunately is limited through enzymatic inactivation caused by dipeptidylpeptidase IV (DPP IV). It is now well established that modifying GLP-1 at the N-terminal amino acids, His7 and Ala8, can greatly improve resistance to this enzyme. Little research has assessed what effect Glu9-substitution has on GLP-1 activity and its degradation by DPP IV. Here, we report that the replacement of Glu9 of GLP-1 with Lys dramatically increased resistance to DPP IV. This analogue (Lys9)GLP-1, exhibited a preserved GLP-1 receptor affinity, but the usual stimulatory effects of GLP-1 were completely eliminated, a trait duplicated by the other established GLP-1-antagonists, exendin (9-39) and GLP-1 (9-36)amide. We investigated the in vivo antagonistic actions of (Lys9)GLP-1 in comparison with GLP-1(9-36)amide and exendin (9-39) and revealed that this novel analogue may serve as a functional antagonist of the GLP-1 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction - The present study aimed to describe characteristics of patients with type 2 diabetes (T2D) in UK primary care initiated on dapagliflozin, post-dapagliflozin changes in glycated hemoglobin (HbA1c), body weight and blood pressure, and reasons for adding dapagliflozin to insulin. Methods - Retrospective study of patients with T2D in the Clinical Practice Research Datalink with first prescription for dapagliflozin. Patients were included in the study if they: (1) had a first prescription for dapagliflozin between November 2012 and September 2014; (2) had a Read code for T2D; (3) were registered with a practice for at least 6 months before starting dapagliflozin; and (4) remained registered for at least 3 months after initiation. A questionnaire ascertained reason(s) for adding dapagliflozin to insulin. Results - Dapagliflozin was most often used as triple therapy (27.7%), dual therapy with metformin (25.1%) or added to insulin (19.2%). Median therapy duration was 329 days [95% confidence interval (CI) 302–361]. Poor glycemic control was the reason for dapagliflozin initiation for 93.1% of insulin-treated patients. Avoiding increases in weight/body mass index and insulin resistance were the commonest reasons for selecting dapagliflozin versus intensifying insulin. HbA1c declined by mean of 9.7 mmol/mol (95% CI 8.5–10.9) (0.89%) 14–90 days after starting dapagliflozin, 10.2 mmol/mol (95% CI 8.9–11.5) (0.93%) after 91–180 days and 12.6 mmol/mol (95% CI 11.0–14.3) (1.16%) beyond 180 days. Weight declined by mean of 2.6 kg (95% CI 2.3–2.9) after 14–90 days, 4.3 kg (95% CI 3.8–4.7) after 91–180 days and 4.6 kg (95% CI 4.0–5.2) beyond 180 days. In patients with measurements between 14 and 90 days after starting dapagliflozin, systolic and diastolic blood pressure decreased by means of 4.5 (95% CI −5.8 to −3.2) and 2.0 (95% CI −2.9 to −1.2) mmHg, respectively from baseline. Similar reductions in systolic and diastolic blood pressure were observed after 91–180 days and when follow-up extended beyond 180 days. Results were consistent across subgroups. Conclusion - HbA1c, body weight and blood pressure were reduced after initiation of dapagliflozin in patients with T2D in UK primary care and the changes were consistent with randomized clinical trials.