8 resultados para transmission measurement
em Aston University Research Archive
Resumo:
The amplification of demand variation up a supply chain widely termed ‘the Bullwhip Effect’ is disruptive, costly and something that supply chain management generally seeks to minimise. Originally attributed to poor system design; deficiencies in policies, organisation structure and delays in material and information flow all lead to sub-optimal reorder point calculation. It has since been attributed to exogenous random factors such as: uncertainties in demand, supply and distribution lead time but these causes are not exclusive as academic and operational studies since have shown that orders and/or inventories can exhibit significant variability even if customer demand and lead time are deterministic. This increase in the range of possible causes of dynamic behaviour indicates that our understanding of the phenomenon is far from complete. One possible, yet previously unexplored, factor that may influence dynamic behaviour in supply chains is the application and operation of supply chain performance measures. Organisations monitoring and responding to their adopted key performance metrics will make operational changes and this action may influence the level of dynamics within the supply chain, possibly degrading the performance of the very system they were intended to measure. In order to explore this a plausible abstraction of the operational responses to the Supply Chain Council’s SCOR® (Supply Chain Operations Reference) model was incorporated into a classic Beer Game distribution representation, using the dynamic discrete event simulation software Simul8. During the simulation the five SCOR Supply Chain Performance Attributes: Reliability, Responsiveness, Flexibility, Cost and Utilisation were continuously monitored and compared to established targets. Operational adjustments to the; reorder point, transportation modes and production capacity (where appropriate) for three independent supply chain roles were made and the degree of dynamic behaviour in the Supply Chain measured, using the ratio of the standard deviation of upstream demand relative to the standard deviation of the downstream demand. Factors employed to build the detailed model include: variable retail demand, order transmission, transportation delays, production delays, capacity constraints demand multipliers and demand averaging periods. Five dimensions of supply chain performance were monitored independently in three autonomous supply chain roles and operational settings adjusted accordingly. Uniqueness of this research stems from the application of the five SCOR performance attributes with modelled operational responses in a dynamic discrete event simulation model. This project makes its primary contribution to knowledge by measuring the impact, on supply chain dynamics, of applying a representative performance measurement system.
Resumo:
The development of an advanced outdoor valve requires coordinated research in the areas of light-triggered self-protecting thyristors, light triggering systems, insulation, cooling and mechanical design aspects. This thesis addresses the first two areas primarily, with a conceptual discussion of the remainder. Using the experience gained from evaluation of a prototype thyristor and computer IKdelling of turn-on behaviour, a light-triggered thyristor with immunity to damage from weak optical triggering and dv/dt triggering was designed, manufactured and evaluated. The optical turn-on process was investigated by measuring currents and voltages in the gate structure during turn-on, and this yielded insights not obtained through conventional measurement techniques. The mechanism by which the thyristor was immune to weak triggering damage is explained, and techniques for optimising the design of the gate structure are proposed. The most significant achievement, however, was the first demonstration of the feasibility of self-protection against forward recovery failure onditions. Furthermore, this was achieved without the need for complex structures or high levels of irradiation. The perfomance of the devices was limited by the inrush capability of the Zones, but it is believed that this can be improved by conventional means. A light triggering system was developed using sem~conductor lasers, and this incorporated several improvements over prior art In terms of optical performance and flexibility.
Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires
Resumo:
The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.
Resumo:
A simple fiber sensor capable of simultaneous measurement of liquid level and refractive index (RI) is proposed and experimentally demonstrated. The sensing head is an all-fiber modal interferometer manufactured by splicing an uncoated single-mode fiber with two short sections of multimode fiber. The interference pattern experiences blue shift along with an increase of axial strain and surrounding RI. Owing to the participation of multiple cladding modes with different sensitivities, the height and RI of the liquid could be simultaneously measured by monitoring two dips of the transmission spectrum. Experimental results show that the liquid level and RI sensitivities of the two dips are 245.7 pm/mm, -38 nm/RI unit (RIU), and 223.7 pm/mm, -62 nm/RIU, respectively. The approach has distinctive advantages of easy fabrication, low cost, and high sensitivity for liquid level detection with the capability of distinguishing the RI variation simultaneously. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
A bending sensor is achieved by employing a singlemode fiber-dual core photonic crystal fiber- singlemode fiber (SDS) structure with two tapers at fusing points. A sensitivity of - 4.3421nm/m∼ between the transmission spectra shift and curvature is demonstrated. © 2013 IEEE.
Resumo:
A novel approach to the determination of steroid entrapment in the bilayers of aerosolised liposomes has been introduced using high-sensitivity differential scanning calorimetry (DSC). Proliposomes were dispersed in water within an air-jet nebuliser and the energy produced during atomisation was used to hydrate the proliposomes and generate liposome aerosols. Proliposomes that included the steroid beclometasone dipropionate (BDP) produced lower aerosol and lipid outputs than steroid-free proliposomes. Size analysis and transmission electron microscopy showed an evidence of liposome formation within the nebuliser, which was followed by deaggregation and size reduction of multilamellar liposomes on nebulisation to a two-stage impinger. For each formulation, no difference in thermal transitions was observed between delivered liposomes and those remaining in the nebuliser. However, steroid (5 mole%) lowered the onset temperature and the enthalpy of the pretransition, and produced a similar onset temperature and larger enthalpy of the main transition, with broadened pretransition and main transitions. This indicates that BDP was entrapped and exhibited an interaction with the liposome phospholipid membranes. Since the pretransition was depressed but not completely removed and no phase separation occurred, it is suggested that the bilayers of the multilamellar liposomes can entrap more than 5 mole% BDP. Overall, liposomes were generated from proliposomes and DSC investigations indicated that the steroid was entrapped in the bilayers of aerosolised multilamellar vesicles.