2 resultados para traffic modeling
em Aston University Research Archive
Resumo:
It has been reported that high-speed communication network traffic exhibits both long-range dependence (LRD) and burstiness, which posed new challenges in network engineering. While many models have been studied in capturing the traffic LRD, they are not capable of capturing efficiently the traffic impulsiveness. It is desirable to develop a model that can capture both LRD and burstiness. In this letter, we propose a truncated a-stable LRD process model for this purpose, which can characterize both LRD and burstiness accurately. A procedure is developed further to estimate the model parameters from real traffic. Simulations demonstrate that our proposed model has a higher accuracy compared to existing models and is flexible in capturing the characteristics of high-speed network traffic. © 2012 Springer-Verlag GmbH.
Resumo:
Most object-based approaches to Geographical Information Systems (GIS) have concentrated on the representation of geometric properties of objects in terms of fixed geometry. In our road traffic marking application domain we have a requirement to represent the static locations of the road markings but also enforce the associated regulations, which are typically geometric in nature. For example a give way line of a pedestrian crossing in the UK must be within 1100-3000 mm of the edge of the crossing pattern. In previous studies of the application of spatial rules (often called 'business logic') in GIS emphasis has been placed on the representation of topological constraints and data integrity checks. There is very little GIS literature that describes models for geometric rules, although there are some examples in the Computer Aided Design (CAD) literature. This paper introduces some of the ideas from so called variational CAD models to the GIS application domain, and extends these using a Geography Markup Language (GML) based representation. In our application we have an additional requirement; the geometric rules are often changed and vary from country to country so should be represented in a flexible manner. In this paper we describe an elegant solution to the representation of geometric rules, such as requiring lines to be offset from other objects. The method uses a feature-property model embraced in GML 3.1 and extends the possible relationships in feature collections to permit the application of parameterized geometric constraints to sub features. We show the parametric rule model we have developed and discuss the advantage of using simple parametric expressions in the rule base. We discuss the possibilities and limitations of our approach and relate our data model to GML 3.1. © 2006 Springer-Verlag Berlin Heidelberg.