3 resultados para total hip prostheses

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post-operative infections resulting from total hip arthroplasty are caused by bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa entering the wound perioperatively or by haemetogenous spread from distant loci of infection. They can endanger patient health and require expensive surgical revision procedures. Gentamicin impregnated poly (methyl methacrylate) bone cement is traditionally used for treatment but is often removed due to harbouring bacterial growth, while bacterial resistance to gentamicin is increasing. The aim of this work was to encapsulate the antibiotics vancomycin, ciprofloxacin and rifampicin within sustained release microspheres composed of the biodegradable polymer poly (dl-lactide-co-glycolide) [PLCG] 75:25. Topical administration to the wound in hydroxypropylmethylcellulose gel should achieve high local antibiotic concentrations while the two week in vivo half life of PLCG 75:25 removes the need for expensive surgical retrieval operations. Unloaded and 20% w/w antibiotic loaded PLCG 75:25 microspheres were fabricated using a Water in Oil emulsification with solvent evaporation technique. Microspheres were spherical in shape with a honeycomb-like internal matrix and showed reproducible physical properties. The kinetics of in vitro antibiotic release into newborn calf serum (NCS) and Hank's balanced salt solution (HBSS) at 37°C were measured using a radial diffusion assay. Generally, the day to day concentration of each antibiotic released into NCS over a 30 day period was in excess of that required to kill St. aureus and Ps. auruginosa. Only limited microsphere biodegradation had occurred after 30 days of in vitro incubation in NCS and HBSS at 37°C. The moderate in vitro cytotoxicity of 20% w/w antibiotic loaded microspheres to cultured 3T3-L1 cells was antibiotic induced. In conclusion, generated data indicate the potential for 20% w/w antibiotic loaded microspheres to improve the present treatment regimens for infections occurring after total hip arthroplasty such that future work should focus on gaining industrial collaboration for commercial exploitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The initial objective of this work was to evaluate and introduce fabrication techniques based on W/0/W double emulsion and 0/W single emulsion systems with solvent evaporation for the incorporation of a surrogate macromolecule (BSA) into microspheres and microcapsules fabricated using P(HB-HV}, PEA and their blends. Biodegradation, expressed as changes in the gross and ultrastructural morphology of BSA loaded microparticulates with time was monitored using SEM concomitant with BSA release. Spherical microparticulates were successfully fabricated using both the W/0/W and 0/W emulsion systems. Both microspheres and microcapsules released BSA over a period of 24 to 26 days. BSA release from P(HB-HV)20% PCL 11 microcapsules increased steadily with time, while BSA release from all other microparticulates was characterised by an initial lag phase followed by exponential release lasting 6-11 days. Microcapsules were found to biodegrade more rapidly than microspheres fabricated from the same polymer. The incubation of microparticulates in newborn calf serum; synthetic gastric juice and pancreatin solution showed that microspheres and microcapsules were susceptible to enzymatic biodegradation. The in vitro incubation of microparticulates in Hank's buffer demonstrated limited biodegradation of microspheres and microcapsules by simple chemical hydrolysis. BSA release was thought to ocurr as a result of the macromolecule diffusing through either inherent micropores or via pores and channels generated in situ by previously dissolved BSA. However, in all cases, irrespective of percentage loading or fabrication polymer, low encapsulation efficiencies were obtained with W/0/W and 0/W techniques (4.2±0.9%- 15.5±0.5%,n=3), thus restricting the use of these techniques for the generation of microparticulate sustained drug delivery devices. In order to overcome this low encapsulation efficiency, a W/0 single emulsion technique was developed and evaluated in an attempt to minimise the loss of the macromolecule into the continuous aqueous phase and increase encapsulation efficiency. Poly(lactide-co-glycolide) [PLCG] 75:25 and 50:50, PEA alone and PEA blended with PLCG 50:50 to accelerate biodegradation, were used to microencapsulate the water soluble antibiotic vancomycin, a putative replacement for gentamicin in the control of bacterial infection in orthopaedic surgery especially during total hip replacement. Spherical microspheres (17.39±6.89~m,n=74-56.5±13.8~m,n=70) were successfully fabricated with vancomycin loadings of 10, 25 and 50%, regardless of the polymer blend used. All microspheres remained structurally intact over the period of vancomycin release and exhibited high percentage yields( 40. 75±2 .86%- 97.16±4.3%,n=3)and encapsulation efficiencies (47.75±9.0%- 96.74±13.2%,n=12). PLCG 75:25 microspheres with a vancomycin loading of 50% were judged to be the most useful since they had an encapsulation efficiency of 96.74+13.2%, n=12 and sustained therapeutically significant vancomycin release (15-25μg/ml) for up to 26 days. This work has provided the means for the fabrication of a spectrum of prototype biodegradable microparticulates, whose biodegradation has been characterised in physiological media and which have the potential for the sustained delivery of therapeutically useful macromolecules including water soluble antibiotics for orthopaedic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis of prosthetic joint infection and its differentiation from aseptic loosening remains problematic. The definitive laboratory diagnostic test is the recovery of identical infectious agents from multiple intraoperative tissue samples; however, interpretation of positive cultures is often complex as infection is frequently associated with low numbers of commensal microorganisms, in particular the coagulase-negative staphylococci (CNS). In this investigation, the value of serum procalcitonin (PCT), interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1) as predictors of infection in revision hip replacement surgery is assessed. Furthermore, the diagnostic value of serum IgG to short-chain exocellular lipoteichoic acid (sce-LTA) is assessed in patients with infection due to CNS. Presurgical levels of conventional serum markers of infection including C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cell count (WBC) is also established. Forty-six patients undergoing revision hip surgery were recruited with a presumptive clinical diagnosis of either septic (16 patients) or aseptic loosening (30 patients). The diagnosis was confirmed microbiologically and levels of serum markers were determined. Serum levels of IL-6 and sICAM-1 were significantly raised in patients with septic loosening (P=0.001 and P=0.0002, respectively). Serum IgG to sce-LTA was elevated in three out of four patients with infection due to CNS. In contrast, PCT was not found to be of value in differentiating septic and aseptic loosening. Furthermore, CRP, ESR and WBC were significantly higher (P=0.0001, P=0.0001 and P=0.003, respectively) in patients with septic loosening. Serum levels of IL-6, sICAM-1 and IgG to sce-LTA may provide additional information to facilitate the diagnosis of prosthetic joint infection.