60 resultados para toll like receptor 4 gene
em Aston University Research Archive
Resumo:
Toll-like receptor (TLR)-4 signalling has been shown to accelerate atherosclerosis. As oxidised phospholipids are present in atherosclerotic plaque and have been shown to modulate TLR4 signalling, we investigated the role of oxidised 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC) in the regulation of TLR 1, 2, 4 and 6 signalling. Unlike established TLR agonists, OxPAPC did not induce NF-?B-dependent gene expression in monocytic THP-1 cells, human aortic endothelial cells or TLR-deficient HEK-293 cells transfected with TLRs 1, 2, 4 or 6. OxPAPC induction of IL-8 was not blocked by the TLR4 specific antagonist Rhodobacter sphaeroides LPS in human aortic endothelial cells, though OxPAPC potently inhibited TLR4 mediated IL-8 induction in these cells. OxPAPC upregulated IL-8 production in TLR4 deficient HEK-293 cells and this was not increased following TLR4 overexpression. Lipids extracted from carotid atherectomy samples did not stimulate TLR 1, 2, 4 or 6 signalling in a HEK-293 transfection assay. TLR4 signalling does not contribute to OxPAPC induced IL-8 expression in human epithelial HEK-293, monocytic THP-1 or aortic endothelial cells. As lipids extracted from diseased human artery also induced no TLR signalling, it is likely that the TLR-activating materials contributing to atherosclerosis are not of endogenous lipid origin.
Resumo:
Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR4), is expressed on commensal colonic bacteria. In a number of tissues, LPS can act directly on epithelial cells to increase paracellular permeability. Such an effect in the colon would have an important impact on the understanding of normal homeostasis and of pathology. Our aim was to use a novel primary culture of colonic epithelial cells grown on Transwells to investigate whether LPS, or Pam(3)CSK( 4), an activator of TLR2, affected paracellular permeability. Consequently, [(14)C]-mannitol transfer and transepithelial electrical resistance (TEER) were measured. The preparation consisted primarily of cytokeratin-18 positive epithelial cells that produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited alkaline phosphatase activity and expressed TLR2 and TLR4. Tight junctions and desmosomes were visible by transmission electron microscopy. Basally, but not apically, applied LPS from Escherichia coli increased the permeability to mannitol and to a 10-kDa dextran, and reduced TEER. The LPS from Helicobacter pylori increased paracellular permeability of gastric cells when applied either apically or basally, in contrast to colon cells, where this LPS was active only from the basal aspect. A pan-caspase inhibitor prevented the increase in caspase activity caused by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. Synthetic Pam(3)CSK(4) in the basal compartment prevented all effects of basal E. coli LPS. In conclusion, LPS applied to the base of the colonic epithelial cells increased paracellular permeability by a mechanism involving caspase activation, suggesting a process by which perturbation of the gut barrier could be exacerbated. Moreover, activation of TLR2 ameliorated such effects.
Resumo:
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not I?B degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.
Resumo:
The cellular changes during ageing are incompletely understood yet immune system dysfunction is implicated in the age-related decline in health. The acquired immune system shows a functional decline in ability to respond to new pathogens whereas serum levels of cytokines are elevated with age. Despite these age-associated increases in circulating cytokines, the function of aged macrophages is decreased. Pathogen-associated molecular pattern receptors such as Toll-like receptors (TLRs) are vital in the response of macrophages to pathological stimuli. Here we review the evidence for defective TLR signalling in normal ageing. Gene transcription, protein expression and cell surface expression of members of the TLR family of receptors and co-effector molecules do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signalling events, including inhibition of positive and activation of negative modulators of TLR induced signalling events. In this paper we hypothesize that despite a poor inflammatory response via TLR activation, the ineffective clearance of pathogens by macrophages increases the duration of their activation and contributes to perpetuation of inflammatory responses and ageing.
Resumo:
Background Atherosclerosis is potentiated by stimulation of Toll-like receptors (TLRs), which serve to detect pathogen associated molecular patterns (PAMPs). However little is known of which PAMPs may be present in atheroma, or capable of stimulating inflammatory signalling in vascular cells. Materials and Methods DNA extracted from human carotid atheroma samples was amplified and sequenced using broad-range 16S gene specific primers to establish historical exposure to bacterial PAMPs. Responsiveness of primary human arterial and venous endothelial and smooth muscle cells to PAMPs specific for each of the TLRs was assessed by measurement of interleukin-8 secretion and E-selectin expression. Results Extracts of atheromatous tissue stimulated little or no signalling in TLR-transfected HEK-293 cells. However, sequencing of bacterial DNA amplified from carotid atheroma revealed the presence of DNA from 17 different bacterial genera, suggesting historical exposure to bacterial lipopeptide, lipopolysaccharide and flagellin. All cells examined were responsive to the ligands of TLR3 and TLR4, poly inosine:cytosine and lipopolysaccharide. Arterial cells were responsive to a wider range of PAMPs than venous cells, being additionally responsive to bacterial flagellin and unmethylated cytosine-phosphate-guanosine DNA motifs, the ligands of TLR5 and TLR9, respectively. Cells were generally unresponsive towards the ligands of human TLR7 and TLR8, loxoribine and single stranded RNA. Only coronary artery endothelial cells expressed TLR2 mRNA and responded to the TLR2 ligand Pam3CSK4. Conclusions Vascular cells are responsive to a relatively diverse range of TLR ligands and may be exposed, at least transiently, to ligands of TLR2, TLR4, TLR5 and TLR9 during the development of carotid atheroma.
Resumo:
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Resumo:
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.
Resumo:
To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.
Resumo:
Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.
Resumo:
1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.
Resumo:
The calcitonin receptor-like receptor (CLR) acts as a receptor for the calcitonin gene-related peptide (CGRP) but in order to recognize CGRP, it must form a complex with an accessory protein, receptor activity modifying protein 1 (RAMP1). Identifying the protein/protein and protein/ligand interfaces in this unusual complex would aid drug design. The role of the extreme N-terminus of CLR (Glu23-Ala60) was examined by an alanine scan and the results were interpreted with the help of a molecular model. The potency of CGRP at stimulating cAMP production was reduced at Leu41Ala, Gln45Ala, Cys48Ala and Tyr49Ala; furthermore, CGRP-induced receptor internalization at all of these receptors was also impaired. Ile32Ala, Gly35Ala and Thr37Ala all increased CGRP potency. CGRP specific binding was abolished at Leu41Ala, Ala44Leu, Cys48Ala and Tyr49Ala. There was significant impairment of cell surface expression of Gln45Ala, Cys48Ala and Tyr49Ala. Cys48 takes part in a highly conserved disulfide bond and is probably needed for correct folding of CLR. The model suggests that Gln45 and Tyr49 mediate their effects by interacting with RAMP1 whereas Leu41 and Ala44 are likely to be involved in binding CGRP. Ile32, Gly35 and Thr37 form a separate cluster of residues which modulate CGRP binding. The results from this study may be applicable to other family B GPCRs which can associate with RAMPs.
Resumo:
Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1.
Resumo:
Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuroprotective factor through the PACAP type 1 receptor, PAC1. In a previous work, we demonstrated that nerve growth factor augmented PAC1 gene expression through the activation of Sp1 via the Ras/MAPK pathway. We also observed that PAC1 expression in Neuro2a cells was transiently suppressed during in vitro ischemic conditions, oxygen-glucose deprivation (OGD). Because endoplasmic reticulum (ER) stress is induced by ischemia, we attempted to clarify how ER stress affects the expression of PAC1. Tunicamycin, which induces ER stress, significantly suppressed PAC1 gene expression, and salubrinal, a selective inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase signaling pathway of ER stress, blocked the suppression. In luciferase reporter assay, we found that two Sp1 sites were involved in suppression of PAC1 gene expression due to tunicamycin or OGD. Immunocytochemical staining demonstrated that OGD-induced transglutaminase 2 (TG2) expression was suppressed by salubrinal or cystamine, a TG activity inhibitor. Further, the OGD-induced accumulation of cross-linked Sp1 in nuclei was suppressed by cystamine or salubrinal. Together with cystamine, R283, TG2-specific inhibitor, and siRNA specific for TG2 also ameliorated OGD-induced attenuation of PAC1 gene expression. These results suggest that Sp1 cross-linking might be crucial in negative regulation of PAC1 gene expression due to TG2 in OGD-induced ER stress. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
INTRODUCTION: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens. AREAS COVERED: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands. EXPERT OPINION: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.