7 resultados para tibialis anterior muscle
em Aston University Research Archive
Resumo:
We examined satellite cell content and the activity of satellite cell progeny in tibialis anterior muscles of young (15 weeks) and aging (101 weeks) Brown Norway (BN) rats, after they were exposed for 50 days to a standardized and highly reproducible regime of chronic low-frequency electrical stimulation. Chronic low-frequency electrical stimulation was successful in inducing fast-to-slow fiber-type transformation, characterized by a 2.3-fold increase in the proportion of IIA fibers and fourfold and sevenfold decreases in the proportion of IID/X and IIB fibers in both young and aging BN rats. These changes were accompanied by a twofold increase in the satellite cell content in both the young and aging groups; satellite cell content reached a level that was significantly higher in the young group (p < .04). The total muscle precursor cell content (i.e., satellite cells plus progeny), however, did not differ between groups, because there was a greater number of satellite cell progeny passing through the proliferative and differentiative compartments of the aging group. The resulting 1.5-fold increase in myonuclear content was similar in the young and aging groups. We conclude that satellite cells and satellite cell progeny of aging BN rats possess an unaltered capacity to contribute to the adaptive response.
Resumo:
Purpose. To assess the effect of ageing on in vivo human ciliary muscle morphology and contractility during accommodation. Methods. Seventy-nine subjects, aged 19–70 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscle in the relaxed state, and at stimulus vergence levels of -4 and -8 D, using anterior segment optical coherence tomography (AS-OCT). Objective refractions and axial lengths were also recorded. Linear regression analysis was performed to determine the effect of age on nasal and temporal ciliary muscle morphologic characteristics. Results. Ciliary muscle anterior length decreased significantly with age both nasally (R = 0.461, P = 0.001) and temporally (R = 0.619, P < 0.001) in emmetropic eyes. In a subset of 37 participants, ciliary muscle maximum width increased significantly with age, by 2.8 µm/year nasally (R = 0.54, P < 0.001) and 3.0 µm/year temporally (R = 0.44, P = 0.007), while the distance from the inner apex of the ciliary muscle to the scleral spur decreased significantly with age on both the nasal and temporal aspects (R = 0.47; P = 0.004 and R = 0.43; P = 0.009, respectively). During accommodation, changes to ciliary muscle thickness and length remained constant throughout life. Conclusions. The human ciliary muscle undergoes age-dependent changes in morphology that suggest an antero-inwards displacement of muscle mass, particularly in emmetropic eyes. However, the morphologic changes observed appear not to affect the ability of the muscle to contract during accommodation, even in established presbyopes, thus supporting a lenticular model of presbyopia development.
Resumo:
Purpose. To use anterior segment optical coherence tomography (AS-OCT) to analyze ciliary muscle morphology and changes with accommodation and axial ametropia. Methods. Fifty prepresbyopic volunteers, aged 19 to 34 years were recruited. High-resolution images were acquired of nasal and temporal ciliary muscles in the relaxed state and at stimulus vergence levels of -4 and -8 D. Objective accommodative responses and axial lengths were also recorded. Two-way, mixed-factor analyses of variance (ANOVAs) were used to assess the changes in ciliary muscle parameters with accommodation and determine whether these changes are dependent on the nasal–temporal aspect or axial length, whereas linear regression analysis was used to analyze the relationship between axial length and ciliary muscle length. Results. The ciliary muscle was longer (r = 0.34, P = 0.02), but not significantly thicker (F = 2.84, P = 0.06), in eyes with greater axial length. With accommodation, the ciliary muscle showed a contractile shortening (F = 42.9. P < 0.001), particularly anteriorly (F = 177.2, P < 0.001), and a thickening of the anterior portion (F= 46.2, P < 0.001). The ciliary muscle was thicker (F = 17.8, P < 0.001) and showed a greater contractile response on the temporal side. Conclusions. The accommodative changes observed support an anterior, as well as centripetal, contractile shift of ciliary muscle mass.
Resumo:
The thesis investigates the relationship between the biomechanical properties of the anterior human sclera and cornea in vivo using Schiotz tonometry (ST), rebound tonometry (RBT, iCare) and the Ocular Response Analyser (ORA, Reichert). Significant differences in properties were found to occur between scleral quadrants. Structural correlates for the differences were examined using Partial Coherent Interferometry (IOLMaster, Zeiss), Optical Coherent tomography (Visante OCT), rotating Scheimpflug photography (Pentacam, Oculus) and 3-D Magnetic Resonance Imaging (MRI). Subject groups were employed that allowed investigation of variation pertaining to ethnicity and refractive error. One hundred thirty-five young adult subjects were drawn from three ethnic groups: British-White (BW), British-South-Asian (BSA) and Hong-Kong-Chinese (HKC) comprising non-myopes and myopes. Principal observations: ST demonstrated significant regional variation in scleral resistance a) with lowest levels at quadrant superior-temporal and highest at inferior-nasal; b) with distance from the limbus, anterior locations showing greater resistance. Variations in resistance using RBT were similar to those found with ST; however the predominantly myopic HKC group had a greater overall mean resistance when compared to the BW-BSA group. OCT-derived scleral thickness measurements indicated the sclera to be thinner superiorly than inferiorly. Thickness varied with distance from the corneolimbal junction, with a decline from 1 to 2 mm followed by a successive increase from 3 to 7 mm. ORA data varied with ethnicity and refractive status; whilst axial length (AL) was associated with corneal biometrics for BW-BSA individuals it was associated with IOP in the HKC individuals. Complex interrelationships were found between ORA Additional-Waveform-Parameters and biometric data provided by the Pentacam. OCT indicated ciliary muscle thickness to be greater in myopia and more directly linked to posterior ocular volume (from MRI) than AL. Temporal surface areas (SAs, from MRI) were significantly smaller than nasal SAs in myopic eyes; globe bulbosity (from MRI) was constant across quadrants.
Resumo:
Purpose - Anterior segment optical coherent tomography (AS-OCT) is used to further examine previous reports that ciliary muscle thickness (CMT) is increased in myopic eyes. With reference to temporal and nasal CMT, interrelationships between biometric and morphological characteristics of anterior and posterior segments are analysed for British-White and British-South-Asian adults with and without myopia. Methods - Data are presented for the right eyes of 62 subjects (British-White n = 39, British-South-Asian n = 23, aged 18–40 years) with a range of refractive error (mean spherical error (MSE (D)) -1.74 ± 3.26; range -10.06 to +4.38) and separated into myopes (MSE (D) <-0.50, range -10.06 to -0.56; n = 30) and non-myopes (MSE (D) =-0.50, -0.50 to +4.38; n = 32). Temporal and nasal ciliary muscle cross-sections were imaged using a Visante AS-OCT. Using Visante software, manual measures of nasal and temporal CMT (NCMT and TCMT respectively) were taken in successive posterior 1 mm steps from the scleral spur over a 3 mm distance (designated NCMT1, TCMT1 et seq). Measures of axial length and anterior chamber depth were taken with an IOLMaster biometer. MSE and corneal curvature (CC) measurements were taken with a Shin-Nippon auto-refractor. Magnetic resonance imaging was used to determine total ocular volume (OV) for 31 of the original subject group. Statistical comparisons and analyses were made using mixed repeated measures anovas, Pearson's correlation coefficient and stepwise forward multiple linear regression. Results - MSE was significantly associated with CMT, with thicker CMT2 and CMT3 being found in the myopic eyes (p = 0.002). In non-myopic eyes TCMT1, TCMT2, NCMT1 and NCMT2 correlated significantly with MSE, AL and OV (p < 0.05). In contrast, myopic eyes failed generally to exhibit a significant correlation between CMT, MSE and axial length but notably retained a significant correlation between OV, TCMT2, TCMT3, NCMT2 and NCMT3 (p < 0.05). OV was found to be a significantly better predictor of TCMT2 and TCMT3 than AL by approximately a factor of two (p < 0.001). Anterior chamber depth was significantly associated with both temporal and nasal CMT2 and CMT3; TCMT1 correlated positively with CC. Ethnicity had no significant effect on differences in CMT. Conclusions - Increased CMT is associated with myopia. We speculate that the lack of correlation in myopic subjects between CMT and axial length, but not between CMT and OV, is evidence that disrupted feedback between the fovea and ciliary apparatus occurs in myopia development.
Resumo:
Purpose: To describe and validate bespoke software designed to extract morphometric data from ciliary muscle Visante Anterior Segment Optical Coherence Tomography (AS-OCT) images. Method: Initially, to ensure the software was capable of appropriately applying tiered refractive index corrections and accurately measuring orthogonal and oblique parameters, 5 sets of custom-made rigid gas-permeable lenses aligned to simulate the sclera and ciliary muscle were imaged by the Visante AS-OCT and were analysed by the software. Human temporal ciliary muscle data from 50 participants extracted via the internal Visante AS-OCT caliper method and the software were compared. The repeatability of the software was also investigated by imaging the temporal ciliary muscle of 10 participants on 2 occasions. Results: The mean difference between the software and the absolute thickness measurements of the rigid gas-permeable lenses were not statistically significantly different from 0 (t = -1.458, p = 0.151). Good correspondence was observed between human ciliary muscle measurements obtained by the software and the internal Visante AS-OCT calipers (maximum thickness t = -0.864, p = 0.392, total length t = 0.860, p = 0.394). The software extracted highly repeatable ciliary muscle measurements (variability ≤6% of mean value). Conclusion: The bespoke software is capable of extracting accurate and repeatable ciliary muscle measurements and is suitable for analysing large data sets.
Resumo:
Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters. Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters. Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181). Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.