3 resultados para thermometry
em Aston University Research Archive
Resumo:
We describe the results of in-vivo trials of a portable fiber Bragg grating based temperature profile monitoring system. The probe incorporates five Bragg gratings along a single fiber and prevents the gratings from being strained. Illumination is provided by a superluminescent diode, and a miniature CCD based spectrometer is used for demultiplexing. The CCD signal is read into a portable computer through a small A/D interface; the computer then calculates the positions of the center wavelengths of the Bragg gratings, providing a resolution of 0.2°C. Tests were carried out on rabbits undergoing hyperthermia treatment of the kidney and liver via inductive heating of metallic implants and comparison was made with a commercial Fluoroptic thermometry system.
Resumo:
We describe the results of in-vivo trials of a portable fiber Bragg grating based temperature profile monitoring system. The probe incorporates five Bragg gratings along a single fiber and prevents the gratings from being strained. Illumination is provided by a superluminescent diode, and a miniature CCD based spectrometer is used for demultiplexing. The CCD signal is read into a portable computer through a small A/D interface; the computer then calculates the positions of the center wavelengths of the Bragg gratings, providing a resolution of 0.2 °C. Tests were carried out on rabbits undergoing hyperthermia treatment of the kidney and liver via inductive heating of metallic implants and comparison was made with a commercial Fluoroptic thermometry system.
Resumo:
Purpose. To review the evolution in ocular temperature measurement during the last century and examine the advantages and applications of the latest noncontact techniques. The characteristics and source of ocular surface temperature are also discussed. Methods. The literature was reviewed with regard to progress in human thermometry techniques, the parallel development in ocular temperature measurement, the current use of infrared imaging, and the applications of ocular thermography. Results. It is widely acknowledged that the ability to measure ocular temperature accurately will increase the understanding of ocular physiology. There is a characteristic thermal profile across the anterior eye, in which the central area appears coolest. Ocular surface temperature is affected by many factors, including inflammation. In thermometry of the human eye, contact techniques have largely been superseded by infrared imaging, providing a noninvasive and potentially more accurate method of temperature measurement. Ocular thermography requires high resolution and frame rate: features found in the latest generation of cameras. Applications have included dry eye, contact lens wear, corneal sensitivity, and refractive surgery. Conclusions. Interest in the temperature of the eye spans almost 130 years. It has been an area of research largely driven by prevailing technology. Current instrumentation offers the potential to measure ocular surface temperature with more accuracy, resolution, and speed than previously possible. The use of dynamic ocular thermography offers great opportunities for monitoring the temperature of the anterior eye. © 2005 Contact Lens Association of Ophthalmologists, Inc.