14 resultados para thermally stimulated depolarization currents
em Aston University Research Archive
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.
Resumo:
The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through attenuation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a surrogate model of skeletal muscle. A comparison has been made of the effects of HMB and those of eicosapentaenoic acid (EPA), a known inhibitor of PIF signaling. At a concentration of 50 μmol/L, EPA and HMB completely attenuated PIF-induced protein degradation and induction of the ubiquitin-proteasome proteolytic pathway, as determined by the "chymotrypsin-like" enzyme activity, as well as protein expression of 20S proteasome α- and β-subunits and subunit p42 of the 19S regulator. The primary event in PIF-induced protein degradation is thought to be release of arachidonic acid from membrane phospholipids, and this process was attenuated by EPA, but not HMB, suggesting that HMB might act at another step in the PIF signaling pathway. EPA and HMB at a concentration of 50 μmol/L attenuated PIF-induced activation of protein kinase C and the subsequent degradation of inhibitor κBα and nuclear accumulation of nuclear factor κB. EPA and HMB also attenuated phosphorylation of p42/44 mitogen-activated protein kinase by PIF, thought to be important in PIF-induced proteasome expression. These results suggest that HMB attenuates PIF-induced activation and increased gene expression of the ubiquitin-proteasome proteolytic pathway, reducing protein degradation.
Resumo:
A new numerical model which incorporates Brillouin shift frequency variations arising from fibre inhomogeneities has been developed for stimulated Brillouin scattering in optical fibres. This enables simulations of backscattered and transmitted power as functions of input power based only on known physical and material parameters as well as the polarisation factor and the measured Brillouin gain linewidth for the fibre. Agreement between modelled and experimental power characteristics for a CW input is excellent.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
Boyd's SBS model which includes distributed thermal acoustic noise (DTAN) has been enhanced to enable the Stokes-spontaneous density depletion noise (SSDDN) component of the transmitted optical field to be simulated, probably for the first time, as well as the full transmitted field. SSDDN would not be generated from previous SBS models in which a Stokes seed replaces DTAN. SSDDN becomes the dominant form of transmitted SBS noise as model fibre length (MFL) is increased but its optical power spectrum remains independent of MFL. Simulations of the full transmitted field and SSDDN for different MFLs allow prediction of the optical power spectrum, or system performance parameters which depend on this, for typical communication link lengths which are too long for direct simulation. The SBS model has also been innovatively improved by allowing the Brillouin Shift Frequency (BS) to vary over the model fibre length, for the nonuniform fibre model (NFM) mode, or to remain constant, for the uniform fibre model (UFM) mode. The assumption of a Gaussian probability density function (pdf) for the BSF in the NFM has been confirmed by means of an analysis of reported Brillouin amplified power spectral measurements for the simple case of a nominally step-index single-mode pure silica core fibre. The BSF pdf could be modified to match the Brillouin gain spectra of other fibre types if required. For both models, simulated backscattered and output powers as functions of input power agree well with those from a reported experiment for fitting Brillouin gain coefficients close to theoretical. The NFM and UFM Brillouin gain spectra are then very similar from half to full maximum but diverge at lower values. Consequently, NFM and UFM transmitted SBS noise powers inferred for long MFLs differ by 1-2 dB over the input power range of 0.15 dBm. This difference could be significant for AM-VSB CATV links at some channel frequencies. The modelled characteristic of Carrier-to-Noise Ratio (CNR) as a function of input power for a single intensity modulated subcarrier is in good agreement with the characteristic reported for an experiment when either the UFM or NFM is used. The difference between the two modelled characteristics would have been more noticeable for a higher fibre length or a lower subcarrier frequency.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
Zeron 100 duplex stainless steel is susceptible to embrittlement following ageing at temperatures between 350 °C and 450 °C. The embrittlement is associated with cleavage of the age-hardened ferrite phase, initiated by deformation twinning. This can result in order of magnitude increases in the fatigue crack propagation rate. The effects of ageing on the mechanisms of fatigue crack propagation in Zero 100 are investigated, and a quantitative model is developed, accounting for the effects of hardness, temperature, stress level and microstructure on the fatigue crack growth rate. © 1994.
Resumo:
Phagocytic cells produce a variety of oxidants as part of the immune defence, which react readily both with proteins and lipids, and could contribute to the oxidation of low density lipoprotein in atherosclerosis. We have investigated the oxidation of phospholipid vesicles by neutrophils and mononuclear cells, to provide a model of lipid oxidation in the absence of competing protein. Phorbol 12-myristate 13-acetate-stimulated neutrophils were incubated with phospholipid vesicles containing dipalmitoyl phosphatidylcholine, palmitoyl-arachidonoyl phosphatidylcholine (PAPC) and stearoyl-oleoyl phosphatidylcholine, before extraction of the lipids for analysis by HPLC coupled to electrospray mass spectrometry. The formation of monohydroperoxides (814 m/z) and bis-hydroperoxides (846 m/z) of PAPC was observed. However, the major oxidized product occurred at 828 m/z, and was identified as 1-palmitoyl-2-(5,6-epoxyisoprostane E-2)-sn-glycero-3-phosphocholine. These products were also formed in incubations where the neutrophils were replaced by mononuclear cells, and the amounts produced per million cells were similar. These results show that following oxidative attack by phagocytes stimulated by PMA, intact phospholipid oxidation products can be detected. The identification of an epoxyisoprostane phospholipid as the major product of phagocyte-induced phospholipid oxidation is novel, and in view of its inflammatory properties has implications for phagocyte involvement in atherogenesis.
Resumo:
We examined satellite cell content and the activity of satellite cell progeny in tibialis anterior muscles of young (15 weeks) and aging (101 weeks) Brown Norway (BN) rats, after they were exposed for 50 days to a standardized and highly reproducible regime of chronic low-frequency electrical stimulation. Chronic low-frequency electrical stimulation was successful in inducing fast-to-slow fiber-type transformation, characterized by a 2.3-fold increase in the proportion of IIA fibers and fourfold and sevenfold decreases in the proportion of IID/X and IIB fibers in both young and aging BN rats. These changes were accompanied by a twofold increase in the satellite cell content in both the young and aging groups; satellite cell content reached a level that was significantly higher in the young group (p < .04). The total muscle precursor cell content (i.e., satellite cells plus progeny), however, did not differ between groups, because there was a greater number of satellite cell progeny passing through the proliferative and differentiative compartments of the aging group. The resulting 1.5-fold increase in myonuclear content was similar in the young and aging groups. We conclude that satellite cells and satellite cell progeny of aging BN rats possess an unaltered capacity to contribute to the adaptive response.
Resumo:
A new novel approach for the stabilisation of polymer-clay nanocomposites has been investigated based on reacting chemically an antioxidant function, a hindered phenol moiety, with an organic modifier based on a quaternary ammonium salt. The chemically linked antioxidant-containing organic modifier (AO-OM) was then introduced into natural montmorillonite (MMt) through a cation-exchange reaction resulting in antioxidant-containing organo-modified clay (AO-OM-MMt). The new antioxidant-containing modified clay, along with other organo-modified clays having a similar organo-modifier but without the reacted antioxidant, were characterised by spectroscopic, thermogravimetric and x-ray diffraction techniques and tested for their thermo-oxidative stability. PA11-based clay nanocomposites samples containing the AO-OM-MMt and the other organo-modified clays, both without and with an added (i.e. not chemically reacted) hindered phenol antioxidant (similar to the one used in the AO-OM) were prepared by melt processing and examined for their processing and long-term thermal-oxidative stability at high temperatures. It was shown that although the new organo-modifier, AO-OM, was also susceptible to the Hoffman elimination reaction, the nanocomposites containing this newly modified clay (PA11/AO-OM-MMt) showed higher melt processing and long-term thermo-oxidative stability, along with excellent clay dispersion and exfoliation, compared to the other PA11-nanocomposites examined here (with and without the conventionally added antioxidant). It is suggested here that the excellent overall performance observed for the PA11/AO-OM-MMt nanocomposites is due to an in-situ partial release of low molecular weight antioxidant species having stabilising functionalities that are capable of acting locally at the interface between the inorganic clay platelets and the polymeric matrix which is a critical area for the onset of degradation processes.