3 resultados para thermal spraying

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After a brief review of the various forms of thermal spraying equipment and processes, descriptions of the basic principles involved and the general functions for which thermally sprayed coatings are used are given. The background of the collaborating company, Metallisation, is described and their position in the overall market discussed, providing a backdrop against which the appropriateness of various project options might be judged. Current arc-spraying equipment is then examined, firstly in terms of the workings of their constituent parts and subsequently by examining the effects of changes in design and in operating parameters both upon equipment operation and the coatings produced. Published literature relating to these matters is reviewed. Literature relating to the production, comminution and propulsion of the particles which form the spray is discussed as are the mechanisms involved at impact with the substrate. Literature on the use of rockets for thermal spraying and induction heating as a process for feedstock melting are also reviewed. Three distinct options for further study are derived and preliminary tests and costings made to allow one option alone, the use of rocket acceleration, to go forward to the experimental phase. A suitable rocket burner was developed, tested and incorporated into an arc-spray system so that the sprayability of the whole could be assessed. Coatings were made using various parameters and these are compared with coatings produced by a standard system. Coatings were examined for macro and micro hardness, cohesive strength, porosity and by microstructural examination. The results indicate a high degree of similarity between the coatings produced by the standard system and the high velocity system. This was surprising in view of the very different atomising media and velocities. Possible causes for this similarity and the general behaviour of this new system and the standard system are discussed before the study reaches its conclusions in not proving the hypothesis that an increase in particle velocity would improve the mechanical properties of arc-sprayed steel coatings. KEY WORDS: Sprayed metal coatings, Electric arc spraying, High velocity flame spraying, Sprayed coating properties

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.