3 resultados para thermal insulation
em Aston University Research Archive
Resumo:
A need was indicated for the identification of a possible new solar energy product to improve the sales potential of a metal film with a selective surface, manufactured by the industriaI sponsor of this project (INCO). A possible way of overcoming the disadvantageous economics of solar energy collection was identified. This utilised the collection of solar energy by the walls of buildings constructed in such a manner as to allow the transfer of energy into the building, whilst providing adequate thermal insulation in the absence of sunlight. The actual collection element of the wall, being metallic, is also capable of performing the function of a low temperature heating .system in the absence of sunlight. As a result of this, the proposed system, by displacing both the wall and centraI heating system which would otherwise be necessary, demonstrates economic benefits over systems which are constructed solely for the purpose of collecting solar energy. The necessary thermodynamic and meteorological. characteristics and data: are established, and applied to a typical urban site in the North of England, for a typical average year, with and without a shading device incorporated into the construction. It is concluded that the proposed system may offer considerable benefit in reducing the effective heating season in all orientations of wall.
Resumo:
The knowledge of insulation debris generation and transport gains in importance regarding reactor safety research for PWR and BWR. The insulation debris released near the break consists of a mixture of very different fibres and particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Experiments are performed to blast original samples of mineral wool insulation material by steam under original thermal-hydraulic break conditions of BWR. The gained fragments are used as initial specimen for further experiments at acrylic glass test facilities. The quasi ID-sinking behaviour of the insulation fragments are investigated in a water column by optical high speed video techniques and methods of image processing. Drag properties are derived from the measured sinking velocities of the fibres and observed geometric parameters for an adequate CFD modelling. In the test rig "Ring line-II" the influence of the insulation material on the head loss is investigated for debris loaded strainers. Correlations from the filter bed theory are adapted with experimental results and are used to model the flow resistance depending on particle load, filter bed porosity and parameters of the coolant flow. This concept also enables the simulation of a particular blocked strainer with CFDcodes. During the ongoing work further results of separate effect and integral experiments and the application and validation of the CFD-models for integral test facilities and original containment sump conditions are expected.
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. Whereas the paper Alt et al. is focused on the experiments in the present paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.