2 resultados para testing tools

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several levels of complexity are available for modelling of wastewater treatment plants. Modelling local effects rely on computational fluid dynamics (CFD) approaches whereas activated sludge models (ASM) represent the global methodology. By applying both modelling approaches to pilot plant and full scale systems, this paper evaluates the value of each method and especially their potential combination. Model structure identification for ASM is discussed based on a full-scale closed loop oxidation ditch modelling. It is illustrated how and for what circumstances information obtained via CFD (computational fluid dynamics) analysis, residence time distribution (RTD) and other experimental means can be used. Furthermore, CFD analysis of the multiphase flow mechanisms is employed to obtain a correct description of the oxygenation capacity of the system studied, including an easy implementation of this information in the classical ASM modelling (e.g. oxygen transfer). The combination of CFD and activated sludge modelling of wastewater treatment processes is applied to three reactor configurations, a perfectly mixed reactor, a pilot scale activated sludge basin (ASB) and a real scale ASB. The application of the biological models to the CFD model is validated against experimentation for the pilot scale ASB and against a classical global ASM model response. A first step in the evaluation of the potential of the combined CFD-ASM model is performed using a full scale oxidation ditch system as testing scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies investigating the determinants of R&D investment consider pooled estimates. However, if the parameters are heterogeneous, pooled coefficients may not provide reliable estimates of individual industry effects. Hence pooled parameters may conceal valuable information that may help target government tools more efficiently across heterogeneous industries. There is little evidence to date on the decomposition of the determinants of R&D investment by industry. Moreover, the existing work does not distinguish between those R&D determinants for which pooling may be valid and those for which it is not. In this paper, we test the pooling assumption for a panel of manufacturing industries and find that pooling is valid only for output fluctuations, adjustment costs and interest rates. Implementing the test results into our model, we find government funding is significant only for low-tech R&D. Foreign R&D and skilled labour matter only in high-tech sectors. These results suggest important implications for R&D policy.