7 resultados para ternary copper alloy
em Aston University Research Archive
Resumo:
Objective. To determine whether copper incorporated into hospital ward furnishings and equipment can reduce their surface microbial load. Design. A crossover study. Setting. Acute care medical ward with 19 beds at a large university hospital. Methods. Fourteen types of frequent-touch items made of copper alloy were installed in various locations on an acute care medical ward. These included door handles and push plates, toilet seats and flush handles, grab rails, light switches and pull cord toggles, sockets, overbed tables, dressing trolleys, commodes, taps, and sink fittings. Their surfaces and those of equivalent standard items on the same ward were sampled once weekly for 24 weeks. The copper and standard items were switched over after 12 weeks of sampling to reduce bias in usage patterns. The total aerobic microbial counts and the presence of indicator microorganisms were determined. Results. Eight of the 14 copper item types had microbial counts on their surfaces that were significantly lower than counts on standard materials. The other 6 copper item types had reduced microbial numbers on their surfaces, compared with microbial counts on standard items, but the reduction did not reach statistical significance. Indicator microorganisms were recovered from both types of surfaces; however, significantly fewer copper surfaces were contaminated with vancomycin-resistant enterococci, methicillin-susceptible Staphylococcus aureus, and coliforms, compared with standard surfaces. Conclusions. Copper alloys (greater than or equal to 58% copper), when incorporated into various hospital furnishings and fittings, reduce the surface microorganisms. The use of copper in combination with optimal infection-prevention strategies may therefore further reduce the risk that patients will acquire infection in healthcare environments.
Resumo:
The manufacture of copper alloy flat rolled metals involves hot and cold rolling operations, together with annealing and other secondary processes, to transform castings (mainly slabs and cakes) into such shapes as strip, plate, sheet, etc. Production is mainly to customer orders in a wide range of specifications for dimensions and properties. However, order quantities are often small and so process planning plays an important role in this industry. Much research work has been done in the past in relation to the technology of flat rolling and the details of the operations, however, there is little or no evidence of any research in the planning of processes for this type of manufacture. Practical observation in a number of rolling mills has established the type of manual process planning traditionally used in this industry. This manual approach, however, has inherent drawbacks, being particularly dependent on the individual planners who gain their knowledge over a long span of practical experience. The introduction of the retrieval CAPP approach to this industry was a first step to reduce these problems. But this could not provide a long-term answer because of the need for an experienced planner to supervise generation of any plan. It also fails to take account of the dynamic nature of the parameters involved in the planning, such as the availability of resources, operation conditions and variations in the costs. The other alternative is the use of a generative approach to planning in the rolling mill context. In this thesis, generative methods are developed for the selection of optimal routes for single orders and then for batches of orders, bearing in mind equipment restrictions, production costs and material yield. The batch order process planning involves the use of a special cluster analysis algorithm for optimal grouping of the orders. This research concentrates on cold-rolling operations. A prototype model of the proposed CAPP system, including both single order and batch order planning options, has been developed and tested on real order data in the industry. The results were satisfactory and compared very favourably with the existing manual and retrieval methods.
Resumo:
A clinical study was undertaken to compare the surface microbial contamination associated with pens constructed of either a copper alloy or stainless steel used by nurses on intensive care units. A significantly lower level of microbial contamination was found on the copper alloy pens. Copyright © 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Resumo:
Case studies in copper-alloy rolling mill companies showed that existing planning systems suffer from numerous shortcomings. Where computerised systems are in use, these tend to simply emulate older manual systems and still rely heavily on modification by experienced planners on the shopfloor. As the size and number of orders increase, the task of process planners, while seeking to optimise the manufacturing objectives and keep within the production constraints, becomes extremely complicated because of the number of options for mixing or splitting the orders into batches. This thesis develops a modular approach to computerisation of the production management and planning functions. The full functional specification of each module is discussed, together with practical problems associated with their phased implementation. By adapting the Distributed Bill of Material concept from Material Requirements Planning (MRP) philosophy, the production routes generated by the planning system are broken down to identify the rolling stages required. Then to optimise the use of material at each rolling stage, the system generates an optimal cutting pattern using a new algorithm that produces practical solutions to the cutting stock problem. It is shown that the proposed system can be accommodated on a micro-computer, which brings it into the reach of typical companies in the copper-alloy rolling industry, where profit margins are traditionally low and the cost of widespread use of mainframe computers would be prohibitive.
Resumo:
Following a scene-setting introduction are detailed reviews of the relevant scientific principles, thermal analysis as a research tool and the development of the zinc-aluminium family of alloys. A recently introduced simultaneous thermal analyser, the STA 1500, its use for differential thermal analysis (DTA) being central to the investigation, is described, together with the sources of support information, chemical analysis, scanning electron microscopy, ingot cooling curves and fluidity spiral castings. The compositions of alloys tested were from the binary zinc-aluminium system, the ternary zinc-aluminium-silicon system at 30%, 50% and 70% aluminium levels, binary and ternary alloys with additions of copper and magnesium to simulate commercial alloys and five widely used commercial alloys. Each alloy was shotted to provide the smaller, 100mg, representative sample required for DTA. The STA 1500 was characterised and calibrated with commercially pure zinc, and an experimental procedure established for the determination of DTA heating curves at 10°C per minute and cooling curves at 2°C per minute. Phase change temperatures were taken from DTA traces, most importantly, liquidus from a cooling curve and solidus from both heating and cooling curves. The accepted zinc-aluminium binary phase diagram was endorsed with the added detail that the eutectic is at 5.2% aluminium rather than 5.0%. The ternary eutectic trough was found to run through the points, 70% Al, 7.1% Si, 545°C; 50% Al, 3.9% Si, 520°C; 30% Al, 1.4% Si, 482°C. The dendrite arm spacing in samples after DTA increased with increasing aluminium content from 130m at 30% to 220m at 70%. The smallest dendrite arm spacing of 60m was in the 30% aluminium 2% silicon alloy. A 1kg ingot of the 10% aluminium binary alloy, insulated with Kaowool, solidified at the same 2°C per minute rate as the DTA samples. A similar sized sand casting was solidified at 3°C per minute and a chill casting at 27°C per minute. During metallographic examination the following features were observed: heavily cored phase which decomposed into ' and '' on cooling; needles of the intermetallic phase FeAl4; copper containing ternary eutectic and copper rich T phase.
Resumo:
The precipitation reactions occurring in a series of copper-based alloys selected from the system copper-chromium-zirconium have been studied by resistometric and metallographic techniques. A survey of the factors influencing the development of copper-based alloys for high strength, high conductivity applications is followed by a more general review of contemporary materials, and illustrates that the most promising alloys are those containing chromium and zirconium. The few systematic attempts to study alloys from this system have been collated, discussed, and used as a basis for the selection of four alloy compositions viz:- Cu - 0.4% Cr Cu - 0.24. Zr Cu - 0. 3% Cr - 0.1% Zr Cu - 0.2% Cr - 0.2% Zr A description of the experimental techniques used to study the precipitation behaviour of these materials is preceeded by a discussion of the currently accepted theories relating to precipitate nucleation and growth. The experimental results are presented and discussed for each of the alloys independently, and are then treated jointly to obtain an overall assessment of the way in which the precipitation kinetics, metallography and mechanical properties vary with alloy composition and heat treatment. The metastable solid solution of copper-chromium is found to decompose by the rejection of chromium particles which maintain a coherent interface and a Kurdjumov-Sachs type crystallographic orientation relationship with the copper matrix. The addition of 0.1% zirconium to the alloy retards the rate of transformation by a factor of ten and modifies the dispersion characteristics of the precipitate without markedly altering the morphology. Further additions of zirconium lead to the growth of stacking faults during ageing, which provide favourable nucleation sites for the chromium precipitate. The partial dislocations bounding such stacking faults are also found to provide mobile heterogeneous nucleation sources for the precipitation reactions occurring in copper-zirconium.