1 resultado para taylor rules
em Aston University Research Archive
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (257)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Bibloteca do Senado Federal do Brasil (3)
- Biodiversity Heritage Library, United States (11)
- Blue Tiger Commons - Lincoln University - USA (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (52)
- Brock University, Canada (16)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CentAUR: Central Archive University of Reading - UK (74)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (49)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (52)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (26)
- Glasgow Theses Service (1)
- Harvard University (11)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (24)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (15)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (8)
- Publishing Network for Geoscientific & Environmental Data (11)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (32)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (11)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
- Universidad Autónoma de Nuevo León, Mexico (7)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (2)
- Universidade Federal do Pará (1)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (26)
- University of Connecticut - USA (4)
- University of Michigan (7)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (6)
Resumo:
Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.