7 resultados para synergistic effects

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermogravimetric methodology was developed to investigate and semi-quantify the extent of synergistic effects during pyrolysis and combustion of municipal solid waste (MSW). Results from TGA-MS were used to compare the pyrolysis and combustion characteristics of single municipal solid waste components (polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), branches (BR), leaves (LV), grass (GR), packaging paper (PK), hygienic paper (HP) and cardboard (CB)) and a mixture (MX) of PP, BR and CB. Samples were heated under dynamic conditions at 20°C/min from 25°C to 1000°C with the continuous record of their main evolved fragments. Synergistic effects were evaluated by comparing experimental and calculated weight losses and relative areas of MS peaks. Pyrolysis of the mixture happened in two stages, with the release of H2, CH4, H2O, CO and CO2 between 200 and 415°C and the release of CH4, CxHy, CO and CO2 between 415 and 525°C. Negative synergistic effect in the 1st stage was attributed to the presence of PP where the release of hydrocarbons and CO2 from BR and CB was inhibited, whereas positive synergistic effects were observed during the 2nd degradation stage. In a second part of the study, synergistic effects were related to the dependency of the effective activation energy (Eα) versus the conversion (α). Higher Eαs were obtained for MX during its 1st stage of pyrolysis and lower Eαs for the 2nd stage when compared to the individual components. On the other hand, mostly positive synergistic effects were observed during the combustion of the same mixture, for which lower Eαs were recorded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Healthcare associated infections may arise from many sources, including patient?s own skin flora and the clinical environment, and inflict a significant burden within the health service. Adequate and effective skin antisepsis and surface disinfection are therefore essential factors in infection control. Current EPIC guidelines recommend 2 % chlorhexidine (CHG) in 70 % isopropyl alcohol (IPA) for skin antisepsis however poor penetration has been reported. Eucalyptus oil (EO) is a known permeation enhancer, producing synergistic antimicrobial activity when combined with CHG. In this current study, the antimicrobial efficacy of EO and its main constituent 1,8-cineole were assessed against a panel of clinically relevant microorganisms, alone and in combination with CHG. The superior antimicrobial efficacy of EO compared with 1,8-cineole, and synergistic effects with CHG against planktonic and biofilm cultures, confirmed its suitability for use in subsequent studies within this thesis. Impregnation of EO, CHG and IPA onto prototype hard surface disinfectant wipes demonstrated significantly improved efficacy compared with CHG/IPA wipes, with clear reductions in the time required to eliminate biofilms. Optimisation of the EO/CHG/IPA formulation resulted in the development of Euclean® wipes, with simulated-use and time kill studies confirming their ability to remove microbial surface contamination, prevent cross contamination and eliminate biofilms within 10 minutes. The employment of isothermal calorimetry provided additional information on the type and rate of antimicrobial activity possessed by Euclean® wipes. A clinical audit of the Euclean® wipes at Birmingham Children?s Hospital, Birmingham, U.K. revealed divided staff opinion, with the highest cited advantage and disadvantage concerning the odour. Finally, skin penetration and cell toxicity studies of EO/CHG biopatches and Euclean® solution developed during this study, revealed no permeation into human skin following biopatch application, and no significant toxicity. These current studies enhance the knowledge regarding EO and its potential applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of compounds containing quinonoid or hindered phenol functions were examined for their roles as antifatigue agents. Among the evaluated quinones and phenols expected to have macroalkyl radical scavenging ability, BQ, αTOC, γTOC and GM showed relatively good performance for fatigue resistance (although their performance was slightly less effective than the commercial aromatic amine antioxidants, IPPD and 6PPD). The compounds which were shown to have higher reactivity with alkyl radicals (via calculated reactivity indices) showed better fatigue resistance. This fact supports the suggestion that strong alkyl radical scavengers should be also effective antifatigue agents. Evidence produced based on calculation of reactivity indices suggests that the quinones examined react with alkyl radicals on the meta position of the quinone rings producing phenoxyl radicals. The phenoxyl radicals are expected either to disproportionate, to recombine with a further alkyl radical, or to abstract a hydrogen from another alkyl radical producing an olefine. The regeneration of quinones and formation of the corresponding phenols is expected to occur during the antifatigue activity. The phenol antioxidant, HBA is expected to produce a quinonoid compound and this is also expected to function in a similar way to other quinones. Another phenol, GM, which is also known to scavenge alkyl radicals showed good antifatigue performance. Tocopherols had effective antifatigue activity and are expected to have different antifatigue mechanisms from that of other quinones, hence αTOC was examined for its mechanisms during rubber fatiguing using HPLC analysis. Trimers of αTOC which were produced during vulcanisation are suggested to contribute to the fatigue activity observed. The evidence suggests that the trimers reproduce αTOC and a mechanism was proposed. Although antifatigue agents evaluated showed antifatigue activity, most of them had poor thermoxidative resistance, hence it was necessary to compensate for this by using a combination of antioxidants with the antifatigue agents. Reactive antioxidants which have the potential to graft on the polymer chains during reactive processing were used for this purpose. APMA was the most effective antioxidant among other evaluated reactive antioxidants. Although high ratio of grafting was achieved after optimisation of grafting conditions, it is suggested that this was achieved by long branches of APMA due to large extent of polymerisation. This is expected to cause maldistribution of APMA leading to reducing the effect of CB-D activity (while CB-A activity showed clear advantages for grafting). Further optimisation of grafting conditions is required in order to use APMA more effectively. Moreover, although synergistic effects between APMA and antifatigue agents were expected, none of the evaluated antifatigue agents, BQ, αTOC, γTOC and TMQ, showed significant synergism both in fatigue and thermoxidative resistance. They performed just as additives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanoparticulate gold has emerged as a promising catalyst for diverse mild and efficient selective aerobic oxidations. However, the mechanism of such atom-economical transformations, and synergy with functional supports, remains poorly understood. Alkali-free Mg-Al hydrotalcites are excellent solid base catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furan dicarboxylic acid (FDCA), but only in concert with high concentrations of metallic gold nanoparticles. In the absence of soluble base, competitive adsorption between strongly-bound HMF and reactively-formed oxidation intermediates site-blocks gold. Aqueous NaOH dramatically promotes solution phase HMF activation, liberating free gold sites able to activate the alcohol function within the metastable 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) reactive intermediate. Synergistic effects between moderate strength base sites within alkali-free hydrotalcites and high gold surface concentrations can afford highly selective and entirely heterogeneous catalysts for aqueous phase aldehyde and alcohol cascade oxidations pertinent to biomass transformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developing novel heterojunction photocatalysts is a powerful strategy for improving the separation efficiency of photogenerated charge carriers, which is attracting the intense research interest in photocatalysis. Herein we report a highly efficient hetero/nanojunction consisting of Ag2CO3 nanoparticles grown on layered g-C3N4 nanosheets synthesized via a facile and template free in situ precipitation method. The UV–vis diffuse reflectance studies revealed that the synthesized Ag2CO3/g-C3N4 hetero/nanojunctions exhibit a broader and stronger light absorption in the visible light region, which is highly beneficial for absorbing the visible light in the solar spectrum. The optimum photocatalytic activity of Ag2CO3/g-C3N4 at a weight content of 10% Ag2CO3 for the degradation of Rhodamine B was almost 5.5 and 4 times as high as that of the pure Ag2CO3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Ag2CO3/g-C3N4 hetero/nanojunctions is due to synergistic effects including the strong visible light absorption, large specific surface area, and high charge transfer and separation efficiency. More importantly, the high photostability and low use of the noble metal silver which reduces the cost of the material. Therefore, the synthesized Ag2CO3/g-C3N4 hetero/nanojunction photocatalyst is a promising candidate for energy storage and environment protection applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives Curcuma zedoaroides A. Chaveerach & T. Tanee, locally known as Wan-Paya-Ngoo-Tua-Mia, is commonly used in the North-Eastern part of Thailand as a 'snakebite antidote'. The aim of this study was to isolate the active compound from the rhizome of C. zedoaroides, to determine its structure and to assess its antagonistic activity in vitro and in vivo against King cobra venom. Methods The active compound was obtained from C. zedoaroides by extraction with acetone followed by purification using column chromatography; its X-ray structure was determined. Its inhibition of venom lethality was studied in vitro in rat phrenic nerve-hemidiaphragms and in vivo in mice. Key findings The acetone extract of the Curcuma rhizomes contained a C20 dialdehyde, [2-(5,5,8a-trimethyl-2-methylene-decahydro-naphthalen-1-yl)-ethylidene] -succinaldehyde, as the major component. The isolated curcuma dialdehyde was found active in vitro and in vivo for antivenin activity against the King cobra venom. Using isolated rat phrenic nerve-hemidiaphragm preparations, a significant antagonistic effect on the inhibition of neuromuscular transmission was observed in vitro. Inhibition on muscle contraction, produced by the 4 μg/ml venom, was reversed by 2-16 μg/ml of Curcuma dialdehyde in organ bath preparations over a period of 2 h. Mice intraperitoneally injected with 0.75 mg/kg venom and dialdehyde at 100 mg/kg had a significantly increased survival time. Injection of Curcuma dialdehyde (100 mg/kg) 30 min before the subcutaneous injection of the venom resulted in a 100% survival time after 2 h compared with 0% for the control group. Conclusions The in vitro and in vivo evaluation confirmed the medicinal use of traditional snake plants against snakebites. The bioactivity is linked to an isolated molecule and not a result of synergistic effects of a mixture. The active compound was isolated and the structure fully elucidated, including its stereochemistry. This dialdehyde is a versatile chemical building block and can be easily obtained from this plant source. © 2010 Royal Pharmaceutical Society of Great Britain.