9 resultados para sustainable transportation

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was conducted in the UK, as part of the New Dynamics of Ageing Working Late project, of the journey to work among 1215 older workers (age groups 45-49, 50-55, 56-60 and 60 + ). The aim was to identify problems or concerns that they might have with their commute, strategies that have been adopted to address them, and the role that employers can play to assist them. Follow-up interviews with 36 employees identified many strategies for assisting with the problems of journeys to work, ranging from car share and using public transport to flexible working and working some days from home. Further interviews with a sample of 12 mainly larger companies showed that employers feel a responsibility for their workers’ commute, with some offering schemes to assist them, such as adjusting work shift timings to facilitate easier parking. The research suggests that the journey to work presents difficulties for a significant minority of those aged over 45, including issues with cost, stress, health, fatigue and journey time. It may be possible to reduce the impact of these difficulties on employee decisions to change jobs or retire by assisting them to adopt mitigating strategies. It does not appear that the likelihood of experiencing a problem with the journey to work increases as the employee approaches retirement; therefore, any mitigating strategy is likely to help employees of all ages. These strategies have been disseminated to a wider audience through an online resource at www.workinglate.org.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a pressing need for sustainable transportation fuels to combat both climate change and dwindling fossil fuel reserves. Biodiesel, synthesised from non-food plant (e.g., Jatropha curcas) or algal crops is one possible solution, but its energy efficient production requires design of new solid catalysts optimized for the bulky triglyceride and fatty acid feedstocks. Here we report on the synthesis of hierarchical macroporous-mesoporous silica and alumina architectures, and their subsequent functionalization by propylsulfonic acid groups or alkaline earth oxides to generate novel solid acid and base catalysts. These materials possess high surface areas and well-defined, interconnected macro-mesopore networks with respective narrow pore size distributions tuneable around 300 nm and 5 nm. Their high conductivity and improved mass transport characteristics enhance activity towards transesterification of bulky tricaprylin and palmitic acid esterification, over mesoporous analogues. This opens the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily implemented and low-cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be derived fromresources which do not compete with agricultural land use for food production, or compromise the environment (e.g. via deforestation). Potential feedstocks include waste lignocellulosic or oil-based materials derived from plant or aquatic sources, with the so-called biorefinery concept offering the co-production of biofuels, platform chemicals and energy; analogous to today's petroleum refineries which deliver both high-volume/low-value (e.g. fuels and commodity chemicals) and lowvolume/ high-value (e.g. fine/speciality chemicals) products, thereby maximizing biomass valorization. This article addresses the challenges to catalytic biomass processing and highlights recent successes in the rational design of heterogeneous catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter looks at how the current global economic crisis has impacted upon the global automotive industry from an operations and supply chain perspective. It presents an empirical and theoretical background to help long and short term planning for organisations experiencing adverse trading conditions. The empirical research study (conducted between 2004-07 primarily in Germany) revealed that organisations are able to make short term improvements to performance by reducing costs and making process and structural improvements, but in the long term the deeper rooted causes of the industry can in part only be dealt with by improving interfirm R&D collaborations based upon competencies rather than cost related issues. A new approach known as Collaborative Enterprise Governance is presented which supports the design and management of competitive sustainable enterprises; it consists of a data capture tool, a body of knowledge and a dynamic reference grid to show how many part-to-part company relationships can exist simultaneously to make up productprocess focused enterprises. Examples from the German automotive industry are given, impact upon the overall product development lifecycle and the implications for organisational strategists are discussed. © 2010 Nova Science Publishers, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The omnipresent global economic crisis has had a particularly dramatic effect on the global automotive industry. It has increased the need for a 3rd revolution and the move towards mass-collaboration between all industrial players that may ultimately lead to a governance model based on partnership-focused collaborative relationships. The first two revolutions were led by the US and Japan respectively, but we propose that this time, the European automotive industry will lead the way in the 3rd revolution. This new book provides an operations and supply chain management perspective while focusing on the issue of sustainable supplier management. © 2010 by Nova Science Publishers, Inc. All Rights Reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concern over the economics of accessing fossil fuel reserves, and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting such carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Here we discuss catalytic esterification and transesterification solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents research from part of a larger project focusing on the potential development of commercial opportunities for the reuse of batteries on the electricity grid system, subsequent to their primary use in low and ultra-low carbon vehicles, and investigating the life cycle issues surrounding the batteries. The work has three main areas; examination of electric vehicle fleet data in detail to investigate usage in first life. Batteries that have passed through a battery recycler at the end of their first life have been tested within the laboratory to confirm the general assumption that remaining capacity of 80% after use in transportation is a reasonable assumption as a basis for second-life applications. The third aspect of the paper is an investigation of the equivalent usage for three different second-life applications based on connection to the electricity grid. Additionally, the paper estimates the time to cell failure of the batteries within their second-life application to estimate lifespan for use within commercial investigations. © 2014 IEEE.