11 resultados para surface morphology evolution

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel metathesis catalyst for the polymerisation of acetylene has been developed. The polyacetylene produced by this new catalyst has been characterised by infra-red and NMR spectroscopy. The conductivity of the pristine material has been studied as a function of temperature, pressure and frequency. The effect on the conductivity of doping the material has also been investigated. The new metathesis catalyst has been incorporated into an anionic-to-metathesis transformation reaction. This novel reaction has been used to prepare samples of poly(styrene-co-acetylene). The copolymer has been characterised using U.V./Visible, NMR, infra-red spectroscopy and the surface morphology looked at using scanning electron microscopy. GPC was also used to give some idea of the molecular weights of the materials prepared. The conductivity of the copolymer has been studied as a function of temperature, pressure and frequency. The effect of doping on the conductivity the material has also been investigated. The conductivity results obtained from both materials have been used to try and gain an insight into the mechanism of the conduction processes occurring within the materials. An attempt has also been made to synthesise polyacetylene oligomers (polyenes) by modifying the Ziegler/Natta type catalysts commonly used to synthesise polyacetylene. The polyenes were characterised using U.V./Visible and infra-red spectroscopy together with GPC and GCMS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microencapsulation processes, based upon the concept of solvent evaporation, have been employed within these studies to prepare microparticles from poly--hydroxybutyrate homopolymers and copolymers thereof with 3-hydroxyvalerate [P(HB-HV) polymers]. Variations in the preparative technique have facilitated the manufacture of two structurally distinct forms of microparticle. Thus, monolithic microspheres and reservoir-type microcapsules have been respectively fabricated by single and double emulsion-solvent evaporation processes. The objective of the studies reported in chapter three is to asses how a range of preparative variables affect the yield, shape and surface morphology of P(HB-HV) microcapsules. The following chapter then describes how microcapsule morphology in general, and microcapsule porosity in particular, can be regulated by blending the fabricating P(HB-HV) polymer with poly--caprolactone [PCL]. One revelation of these studies is the ability to generate uniformly microporous microcapsules from blends of various high molecular weight P(HB-HV) polymers with a low molecular weight form of PCL. These microcapsules are of particular interest because they may have the potential to facilitate the release of an encapsulated macromolecule via an aqueous diffusion mechanism which is not reliant on polymer degradation. In order to investigate this possibility, one such formulation is used in chapter five to encapsulate a wide range of different macromolecules, whose in vitro release behaviour is subsequently evaluated. The studies reported in chapter six centre on the preparation and characterization of hydrocortisone-loaded microspheres, prepared from a range of P(HB-HV) polymers, using a single emulsion-solvent evaporation process. In this chapter, the influence of the organic phase viscosity on the efficiency of drug encapsulation is the focus of initial investigations. Thereafter, it is shown how the strategies previously adopted for the regulation of microcapsule morphology can also be applied to single emulsion systems, with profound implications for the rate of drug release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrospinng of a fibrous triblock copolymer consisting of poly(methyl methacrylate-block-poly[2-(diethylamino) ethyl methacrylate]-block-poly(methyl methacrylate) (PMMA-b-PDEA-b-PMMA) has been discussed. A mixed co-solvent system of tetrahydrofuran (THF) and dimethylformamide (DMF) was used to electrospin fibrous PMMA-b-PDEA-b-PMMA and its influence on surface morphology and diameter of the electrospun fiber was also investigated in an attempt to control the fiber diameter. The concentration range between 20 and 40 wt % was found suitable for electrospinning of PMMA-b-PDEA-b-PMMA in a THF/DMF system. It was also observed that the average fiber diameter decreased as the content of DMF was increased. A significant decrease in fiber diameter was observed when moving from a THF solution to a THF/DMF system at a ratio of 70:30.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 mu m, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 mu m), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 mu m). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(ε-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. As-spun PCL fibres exhibited a mean strength and stiffness of 7.9 MPa and 0.1 GPa, respectively and a rough, porous surface morphology. Cold drawing to an extension of 500% resulted in increases in fibre strength (43 MPa) and stiffness (0.3 GPa) and development of an oriented, fibrillar surface texture. The proliferation rate of Swiss 3T3 mouse fibroblasts and C2C12 mouse myoblasts on as-spun, 500% cold-drawn and gelatin-modified PCL fibres was determined in cell culture to provide a basic measure of the biocompatibility of the fibres. Proliferation of both cell types was consistently higher on gelatin-coated fibres relative to as-spun fibres at time points below 7 days. Fibroblast growth rates on cold-drawn PCL fibres exceeded those on as-spun fibres but myoblast proliferation was similar on both substrates. After 1 day in culture, both cell types had spread and coalesced on the fibres to form a cell layer, which conformed closely to the underlying topography. The high fibre compliance combined with a potential for modifying the fibre surface chemistry with cell adhesion molecules and the surface architecture by cold drawing to enhance proliferation of fibroblasts and myoblasts, recommends further investigation of gravity-spun PCL fibres for 3-D scaffold production in soft tissue engineering. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer beads have attracted considerable interest for use in catalysis, drug delivery, and photo­nics due to their particular shape and surface morphology. Electrospinning, typically used for producing nanofibers, can also be used to fabricate polymer beads if the solution has a sufficiently low concentration. In this work, a novel approach for producing more uniform, intact beads is presented by electrospinning self-assembled block copolymer (BCP) solutions. This approach allows a relatively high polymer concentration to be used, yet with a low degree of entanglement between polymer chains due to microphase separation of the BCP in a selective solvent system. Herein, to demonstrate the technology, a well-studied polystyrene-poly(ethylene butylene)–polystyrene triblock copolymer is dissolved in a co-solvent system. The effect of solvent composition on the characteristics of the fibers and beads is intensively studied, and the mechanism of this fiber-to-bead is found to be dependent on microphase separation of the BCP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At  α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of CoFe2O4 nanoparticles have been prepared via co-precipitation and controlled thermal sintering, with tunable diameters spanning 7–50 nm. XRD confirms that the inverse spinel structure is adopted by all samples, while XPS shows their surface compositions depend on calcination temperature and associated particle size. Small (<20 nm) particles expose Fe3+ enriched surfaces, whereas larger (∼50 nm) particles formed at higher temperatures possess Co:Fe surface compositions close to the expected 1:2 bulk ratio. A model is proposed in which smaller crystallites expose predominately (1 1 1) facets, preferentially terminated in tetrahedral Fe3+ surface sites, while sintering favours (1 1 0) and (1 0 0) facets and Co:Fe surface compositions closer to the bulk inverse spinel phase. All materials were active towards the gas-phase methylation of phenol to o-cresol at temperatures as low as 300 °C. Under these conditions, materials calcined at 450 and 750 °C exhibit o-cresol selectivities of ∼90% and 80%, respectively. Increasing either particle size or reaction temperature promotes methanol decomposition and the evolution of gaseous reductants (principally CO and H2), which may play a role in CoFe2O4 reduction and the concomitant respective dehydroxylation of phenol to benzene. The degree of methanol decomposition, and consequent H2 or CO evolution, appears to correlate with surface Co2+ content: larger CoFe2O4 nanoparticles have more Co rich surfaces and are more active towards methanol decomposition than their smaller counterparts. Reduction of the inverse spinel surface thus switches catalysis from the regio- and chemo-selective methylation of phenol to o-cresol, towards methanol decomposition and phenol dehydroxylation to benzene. At 300 °C sub-20 nm CoFe2O4 nanoparticles are less active for methanol decomposition and become less susceptible to reduction than their 50 nm counterparts, favouring a high selectivity towards methylation.