6 resultados para surface hardness

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is some evidence to suggest that nitriding of alloy steels, in particular high speed tool steels, under carefully controlled conditions might sharply increase rolling contact fatigue resistance. However, the subsurface shear stresses developed in aerospace bearing applications tend to occur at depths greater than the usual case depths currently produced by nitriding. Additionally, case development must be limited with certain materials due to case spalling and may not always be sufficient to achieve the current theoretical depths necessary to ensure that peak stresses occur within the case. It was the aim of' this work to establish suitable to overcome this problem by plasma nitriding. To assist this development a study has been made of prior hardening treatment, case development, residual stress and case cracking tendency. M2 in the underhardened, undertempered and fully hardened and tempered conditions all responded similarly to plasma nitriding - maximum surface hardening being achieved by plasma nitriding at 450°C. Case development varied linearly with increasing treatment temperature and also with the square root of the treatment time. Maximum surface hardness of M5O and Tl steels was achieved by plasma nitriding in 15% nitrogen/85% hydrogen and varied logarithmically with atmosphere nitrogen content. The case-cracking contact stress varied linearly with nitriding temperature for M2. Tl and M5O supported higher stresses after nitriding in low nitrogen plasma atmospheres. Unidirectional bending fatigue of M2 has been improved up to three times the strength of the fully hardened and tempered condition by plasma nitriding for 16hrs at 400°C. Fatigue strengths of Tl and M5O have been improved by up to 30% by plasma nitriding for 16hrs at 450°C in a 75% hydrogen/25% nitrogen atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wear rates of sliding surfaces are significantly reduced if mild oxidational wear can be encouraged. It is hence of prime importance in the interest of component life and material conservation to understand the factors necessary to promote mild, oxidational wear, The present work investigates the fundamental mechanism of the running-in wear of BS EN 31!EN 8 steel couples. under various conditions of load. speed and test duration. Unidirectional sliding experiments were carried out on a pin-on~disc wear machine where frictional force, wear rate, temperature and contact resistance were continuously monitored during each test. Physical methods of analysis (x-ray, scanning electron microscopy etc.) were used to examine the wear debris and worn samples. The wear rate versus load curves revealed mild wear transitions, which under long duration of running, categorized mild wear into four distinct regions.α-Fe20s. Fe304, FeO and an oxide mixture were the predominant oxides in four regions of oxidational wear which were identified above the Welsh T2 transition. The wear curves were strongly effected by the speed and test duration. A surface model was used to calculate the surface parameters, and the results were found to be comparable with the experimentally observed parameters. Oxidation was responsible for the transition from severe to mild wear at a load corresponding to the Welsh T2 transition. In the running-in period sufficient energy input and surface hardness enabled oxide growth rate to increase and eventually exceeded the rate of removal, where mild wear ensued. A model was developed to predict the wear volume up to the transition. Remarkable agreement was found between the theoretical prediction and the experimentally-measured values. The oxidational mechanjsm responsible for transitjon to mild wear under equilibrium conditions was related to the formation of thick homogenous oxide plateaux on subsurface hardened layers, FeO was the oxide formed initially at the onset of mild wear but oxide type changed.during the total running period to give an equilibrium oxide whose nature depended on the loads applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonated cement paste surfaces were characterised prior to application of surface treatments. Their chemical and physical properties varied with distance from the surface and method of carbonation. From the surface inwards the pH of expressed pore solutions and porosity were observed to increase. Hardness increased after natural carbonation, but decreased after accelerated carbonation. Generally, accelerated carbonation caused more extreme changes. Investigations were carried out on four concrete surface hardening treatments; two sodium silicates and two silicofluorides. These treatments penetrated and hardened the surface of naturally dried uncarbonated cement paste to a depth fo 250m. Silicofluorides reacted with uncarbonated and carbonated cement pastes to form calcium fluoride. The question of how sodium silicates harden the surface remains unanswered. Surface hardeners do not significantly affect the rate of carbonation, and are unsuitable for re-alkalising carbonated cement paste. Water repellent treatments studied include a silane, a siloxane and a silicone. The silane exhibited the maximum penetration, up to 24mm under favourable conditions, but penetration in all cases was limited by moisture in the substrate. Water repellent treatments slow down water vapour diffusion but, with time, internal moisture levels should reflect external relative humidities. Water repellents may be used to reduce carbonation-induced corrosion where ingress of moisture from intermittent wetting may be slowed. However, treatment with water repellents can temporarily push the carbonation front deeper into the concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of subsurface cracks formed under and around Vickers hardness indentations is often assumed rather than identified. Subsurface cracks in four engineering ceramics are revealed using a penetrant technique, and flaw dimensions are recorded. The resulting data are used to investigate several aspects of indentation cracking, such as crack shape, functional relationships between indentation load and flaw dimensions, and the performance of indentation fracture toughness equations. An R curve is constructed for each of the materials. © 1995 The Institute of Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to investigate the influence of process parameters during dry coating on particle and dosage form properties upon varying the surface adsorbed moisture of microcrystalline cellulose (MCC), a model filler/binder for orally disintegrating tablets (ODTs). METHODS: The moisture content of MCC was optimised using the spray water method and analysed using thermogravimetric analysis. Microproperty/macroproperty assessment was investigated using atomic force microscopy, nano-indentation, scanning electron microscopy, tablet hardness and disintegration testing. KEY FINDINGS: The results showed that MCC demonstrated its best flowability at a moisture content of 11.2% w/w when compared to control, comprising of 3.9% w/w moisture. The use of the composite powder coating process (without air) resulted in up to 80% increase in tablet hardness, when compared to the control. The study also demonstrated that surface adsorbed moisture can be displaced upon addition of excipients during dry processing circumventing the need for particle drying before tabletting. CONCLUSIONS: It was concluded that MCC with a moisture content of 11% w/w provides a good balance between powder flowability and favourable ODT characteristics.