3 resultados para surface calculation

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experirnental data and theoretical calculation on the heat transfer performance of extended surface submerged: in shallow air fluidized beds ~ less than 150 mm, are presented. Energy t;ransferrence from the bed material was effected by water cooled tubes passing through the fins. The extended surface tested was either manufactured from square or radial copper fins silver soldered to a circular basic tube or commercially supplied, being of the crimped or extruded helical fin type. Performances are compared, for a wide range of geometric variables, bed configurations and fluidized materials, with plain and oval tubes operating under similar experimental conditions. A statistical analysis of all results, using a regression technique, has shown the relative importance of each significant variable. The bed to surface heat transfer coefficients are higher than those reported in earlier published work using finned tubes in much deeper beds and the heat transfer to the whole of the extended surface is at least as good as that previously reported for un-finned tubes. The improved performance is attributed partly to the absence of large bubbles in shallow beds and it is suggested that the improved circulation of the solids when constrained in the narrow passages between adjacent fins may be a contributory factor. Flow visualisation studies between a perspex extended surface and a fluidized bed using air at ambient temperatures, have demonstrated the effect of too small a fin spacing. Fin material and the bonding to the basic tube are more important in the optimisation of performance than in conventional convective applications because of the very much larger heat fluxes involved. A theoretical model of heat flow for a radial fin surface, provides data concerning the maximum heat transfer and minimum metal required to fulfil a given heat exchange duty. Results plotted in a series of charts aim at assisting the designer of shalJow fluidized beds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 1990's, outline designs for two wetland nature reserves were being prepared: the Teeside International Nature Reserve (TINR) and the Cardiff Bay Barrage Environmental Compensation Measures at Redwick, Gwent. The initial design for both proposals identified reedbed as a desirable habitat for establishment. The initial design works identified the importance of reedbed evapotranspiration [ET(Reed)] within the water budget, however, literature searches identified a paucity of information on this parameter. Field experiments for the measurement of ET(Reed) from Phragmites australis are described for three sites distributed across England and Wales. Reference Crop Evapotranspiration (ETo) was calculated using techniques recommended by the Food and Agriculture Organisation. A technique for the calculation of a reedbed crop coefficient [Kc(Reed)[, from ET(Reed) and ETo data is discussed. Kc(Reed) values produced in the project were found to be similar to those developed previously in continental Europe. Mean monthly and crop development stage Kc(Reed) values are presented which are applicable in the UK and possibly worldwide. A conceptual hydrological model of surface water fed reedbed systems is developed, and used to calculate the hydrological sustainability of reedbed creation areas in the UK. Finally, the water budget model is verified using data from a small clay catchment located on the TINR. In addition, a methodology is developed for the hydrological design of surface water fed reedbed systems, and recommendations required for the feasibility, design and establishment stage of reedbed creation sites. Further research needs are also identified.