22 resultados para sulfur selenium tellurium reaction heterocyclic cationic species
em Aston University Research Archive
Resumo:
The purpose of this work is to gain knowledge on kinetics of biomass decomposition under oxidative atmospheres, mainly examining effect of heating rate on different biomass species. Two sets of experiments are carried out: the first set of experiments is thermal decomposition of four different wood particles, namely aspens, birch, oak and pine under an oxidative atmosphere and analysis with TGA; and the second set is to use large size samples of wood under different heat fluxes in a purpose-built furnace, where the temperature distribution, mass loss and ignition characteristics are recorded and analyzed by a data post-processing system. The experimental data is then used to develop a two-step reactions kinetic scheme with low and high temperature regions while the activation energy for the reactions of the species under different heating rates is calculated. It is found that the activation energy of the second stage reaction for the species with similar constituent fractions tends to converge to a similar value under the high heating rate.
Resumo:
2-(2-pyridyl)phenyl(p-ethoxyphenyl)tellurium(II), (RR1Te) reacts with HgC12 at room temperature to give white HgCl2.RR1Te. On setting aside, or on warming the reaction mixture a yellow material, [R1HgCl.(RTeCl)2] is formed. Multinuclear NMR(125Te, 199Hg, 1H) and mass spectroscopy confirm the formulation, and confirm the ease of transfer of the p-ethoxyphenyl group (R1) between the metal centres. The crystal structure of the yellow material consists of two discrete RTeCl molecules together with a R1HgCl molecule. There is no dative bond formation between these species, hence the preferred description of the formation of an inclusion complex. The reaction of RR1Te with Copper(I) chloride in the cold gives an air sensitive yellow product Cu3Cl3(RR1Te)2(0.5CH3CN); under reflux in air changes to the green Cu2Cl(RR1Te)(0.5 EtOH). By contrast, the reaction of RR1Te with acetonitrile solution of Copper(II) salts under mild conditions affords the white materials CuCl(RR1Te) and CuBr(RR1Te)H2O. RR1Te reacts with PdCl2 and PtCl2 to give materials albeit not well defined, can be seen as intermediates to the synthesis of inorganic phase of the type M3XTe2XCl2X. Paramagnetism is associated with some of the palladium and platinum products. The 195Pt NMR measurement in DMSO establishes the presence of six platinum species, which are assigned to Pt(IV), Pt(III) or Pt(II). The reactions show that in the presence of PdCl2 or PtCl2 both R and R1 are very labile. The reaction of RHgCl(R= 2-(2-pyridyl)phenyl) with SeX4(X= Cl, Br) gives compounds which suggest that both Trans-metallation and redox processes are involved. By varying reaction conditions materials which appear to be intermediates in the trans-metallation process are isolated. Potentially bidentate tellurium ligands having molecular formula RTe(CH2)nTeR,Ln, (R= Ph,(t-Bu). C6H4, n = 5,10) are prepared. Palladium and Platinum complexes containing these ligands are prepared. Also complex Ph3SnC1L(L = p-EtO.C6H4) is prepared.
Resumo:
The reactions of directly related tellurium and selenium heterocyclic compounds with triiron dodecacarbonyl are described. The reaction of 2-telluraphthalide, C8H8OTe with [Fe3(CO)12 gave [Fe{C6H4(CH2)Te}(CO)3]2, (1). An iron atom has inserted into the telluracyclic ring, and it is probable that one co-ordinated CO ligand arises from the initially organic carbonyl group. X-ray analysis of compound (1) showed that the compound has a Fe2Te2 core, which is achieved by dimerisation. The reaction of telluraphthalic anhydride, C8H402Te with [Fe3(CO)12] gave a known, but unexpected, organic phthalide product, C8H602, which was confirmed by X-ray crystallography. Selenaphthalic anhydride, C8H4O2Se gave intractable products on reaction with [Fe3(CO)12], 2-selenaphthalide, C8H6OSe, on reaction with [Fe3(CO)12] gave a major product [Fe2{C6H4(CH2)Se}(CO)6], (2) and a minor product [Fe3{C6H4(CH2)Se}(CO)8], (3) which is an intermediate in the formation of (2). X-ray analysis of (2) shows that compound (2) is very similar to (1) except that the 18 electron rule is satisfied by co-ordination of a Fe(CO)3 moiety, rather than dimerisation. Compound (3), also studied by X-ray crystallography, differs from (2) mainly in the addition of an Fe(CO)2 moiety. Telluraphtbalic anhydride, C8H402Te, and selenaphthalic anhydride, C8H402Se, are both monoclinic and crystallise in space group P21/n. 2-Selenaphthalide, C8H402Se, is also monoclinic, space group P21/C. The reactions of the following compounds (l,3-dihydrobenzo[c]selenophene, 1,3,7,9-tetrahydrobenzo[1,2c; 4,5c'] ditellurophene, dibenzoselenophene, phenoxselenine, 3, 5-naphtho-1-telluracyclohexane and 3,5-naphtho-1-selenacyclohexane) with [Fe3lCO)12] are reported. It is unfortunate that the above compounds do not react under the conditions employed; this may be due to differing degrees of ring strain. 1,8-bis(bromomethyl)naphthalene, C12H10Br2 is monoclinic and crystallises in space group C2/c. 1,1-diiodo-3,5-naphthotelluracyclohexane, C12H10TeI2 and 3,5-naphtho-l-telluracyclohexane, C12H10Te are monoclinic and crystallise in space group P21/c. 3,5-naphtho-l-selenacyclohexane, C12H10Se and 2,2,8,8-tetraiodo-1,3,7,9-tetrahydrobenzo[1,2c;4,5c']ditellurophene are also monoclinic, space group P21/a. The syntheses of intramolecular stabilised organo-tellurium and selenium compounds are reported, having a general formula of REX (where R = phenylazophenyl; E = Se, Te; X = electronegative group, for example C1, Br or I). The crystal structures of R'TeBr, RTeI, RSeCI, RSeCI/I and RSeI (where R = phenylazophenyl) are reported. The tellurium containing X-ray structures are triclinic and have a space group P-1. The selenium containing X-ray structures are monoclinic with space group P21/n. The inclusion of nitrogen in selenium heterocycles provides access to an entirely new area of organometallic chemistry. The reaction of 2-methylbenzoselenazole with [Fe3(CO)12] gave [Fe2{C6H4(NCH2CH3)Se}(CO)6]. The reactions of 2-(methyltelluro)benzanilide or 2-(methylseleno)benzanilide with [Fe3(CO)12] gave reaction products [Fe2(μTeMe)2(CO)6] and [Fe2 (μ-SeMe)2(CO)6] respectively, which were confmned by X-ray crystallography. The use of Mossbauer spectroscopy on the products obtained from the reactions of heterocyclic compounds with [Fe3(CO)12] can give useful information, for example the number of iron sites and the environments of these iron sites within the products.
Resumo:
The kinetics of the polymerization of styrene iniated by 1-chloro-1-phenyltehane/tin (IV) chloride in the presence of tetrabutylammonium chloride have been studied. Dilatometry studies at 25 °C were conducted and the orders of reaction were established. Molecular weight studies were conducted for these experiments using size exclusion chromatography. These studies indicated that transfer/termination reactions were present. The observed kinetics may be explained by a polymerization mechanism involving a single propagating species which is present in low concentrations. Reactions at 0 °C and -15 °C have shown that a "living" polymerization could be obtained at low temperatures. A method was derived to study the kinetics of a "living" polymerization by following the increase in degree of polymerization with time. Polymerizations of styrene were conducted using 1,4-bis(bromomethyl)benzene as a difunctional co-catalyst. These reactions produced polymers with broad or bimodal molecular weight distributions. These observations may be explained by the rate of initiation being slower than the rate of propagation or the presence of transfer/termination reactions. Reactions were conducted using a co-catalyst using a co-catalyst produced by the addition of 1,1-diphenylethane to 1,4-bis(bromomethyl)benzene. Size exclusion chromatography studies showed that the polymers produced had a narrower molecular weight distribution than those produced by polymerizations initiated by 1,4-bis(bromomethyl)benzene alone. However the polydispersity was still observed to increase with reaction time. This may also be explained by slow initiation compared to the rate of propagation. Polymerizations initiated by both bifunctional initiators were examined using the method of studying reaction kinetics by following the change in number average degree of polymerization. The results indicated that a straight line relationship could also be obtained with a non-living polymerization.
Resumo:
The polymerization of isobutene initiated by 1-chloro-1-phenylethane has been investigated, and molecular weight studies conducted using size exclusion chromatography. Polymerizations carried out in a 40/60 (v/v) mixture of dichloromethaneIcyclohexane, using titanium (IV) chloride as a catalyst in the presence of pyridine at -30 °C were found to be controlled and living. The number average molecular weights of the polymers increased linearly with monomer conversion, and the molecular weight distributions were between 1.15 and 1.20. Efficiencies of initiation were between 80 and 100%, and evidence was found to suggest that backbiting to the initiator had occurred, resulting in the formation of cyclic oligomers during the early stages of polymerization. The kinetics of polymerization can be explained in terms of active species in. equilibrium with dormant species. The effects of temperature. and dielectric constant on this equilibrium were studied and a model based upon the Fuoss equation was developed. Pyridine was found to behave as proton trap in the system, and when it was used in excess the rate of polymerization was retarded. By assuming that the catalyst and pyridine formed a one to one complex, it was possible to show that the reaction was second order with respect to the catalyst. The synthesis of low molecular weight polyisobutenes was studied. When the concentration of initiator was increased relative to that of the isobutene, such that the theoretical degree of polymerization was 20 or less, the rate of initiation was slow compared to propagation. The efficiency of initiation in these polymerizations was typically between 30 and 40 %. Optimal conditions of temperature. and.catalyst concentration were established, leading to a 60 % efficiency of initiation. A one-pot synthesis of phenol end-capped polyisobutene was attempted by adding phenol at the end of a living polymerization. Evidence to substantiate the existence of capped polymer chains in the resultant product was inconclusive. Block copolymerizations of oxetane and isobutene were conducted using 1-chloro-1phenylethane/TiCl4, but no copolymer or oxetane homopolymer could be isolated.
Resumo:
This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.
Resumo:
The activation-deactivation pseudo-equilibrium coefficient Qt and constant K0 (=Qt x PaT1,t = ([A1]x[Ox])/([T1]x[T])) as well as the factor of activation (PaT1,t) and rate constants of elementary steps reactions that govern the increase of Mn with conversion in controlled cationic ring-opening polymerization of oxetane (Ox) in 1,4-dioxane (1,4-D) and in tetrahydropyran (THP) (i.e. cyclic ethers which have no homopolymerizability (T)) were determined using terminal-model kinetics. We show analytically that the dynamic behavior of the two growing species (A1 and T1) competing for the same resources (Ox and T) follows a Lotka-Volterra model of predator-prey interactions. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
IgG can be denatured in vitro by reactive oxygen species (ROS). Native IgG activates the complement cascade through C1q. Using a modified ELISA, C1q binding activity of rheumatoid IgG has been compared to IgG denatured by neutrophil-derived ROS. The C1q binding activity of rheumatoid synovial fluid IgG is greater than the corresponding serum IgG (P < 0.01). Denaturation of IgG by activated polymorphs or the Fenton reaction decreased its C1q binding activity (P < 0.01). In vitro exposure of IgG to OH. and ROO. increased its interaction with C1q (P < 0.01). Hypochlorous acid had no effect. ROS-induced alteration to IgG-C1q binding activity may promote the inflammatory response in rheumatoid arthritis.
Resumo:
The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.
Resumo:
The 16S rRNA genes from spirochaetes associated with digital dermatitis of British cattle were amplified by polymerase chain reaction from digital dermatitis lesion biopsies using one universal and one treponeme-specific primer. Two treponemal sequences were identified both of which shared a high degree of homology with the oral pathogen Treponema denticola (98%). Two further 16S rRNA gene sequences were obtained and shared similarity to Bacteroides levii (99%) and Mycoplasma hyopharyngis (98%). Polymerase chain reaction with T. denticola-specific primers amplified a potential virulence gene from digital dermatitis lesions which shared a high degree of homology to the 46-kDa haemolysin gene of T. denticola. The significance of the presence of organisms in digital dermatitis lesions of the bovine foot which are closely related to oral pathogens is discussed.
Resumo:
The kinetics and mechanisms of ring opening polymerization and copolymerizntion of different cyclic ethers were studied using mainly a cationic system of iinitiation. BF30Et2/ethanediol. The cyclic ethers reacted differently showing that ring strain and basicity are the main driving forces in cationic ring opening polymerizaion. In most cases it was found that the degree of polymerization is controlled kinetically via terminations with the counterion and the monomers, and that the contribution of each type of reaction to the overall termination differs markedly. The Gel permeation chromatography studies showed that the molecular weight distribution of the samples of polyoxetanes were bimodal. This was in accordance with previous work establishing that the cyclic tetramer is found in much higher proportions than any of the other cyclic oligomers. However the molecular weight distribution of the copolymers made from oxetane and THF or from oxetane and oxepane were shown to be unimodal. These observations could be explained by a change in the structure of the growing end involved in the cationic polymerization. In addition crown ethers like dibenzo-crown-6 and compounds such as veratrole are believed to stabilise the propagating end and promote the formation of living polymers from oxetane.
Resumo:
The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.
Resumo:
The primary theme of this research was the characterisation of new and novel organo-tellurium complexes, using the technique of single crystal X-ray analysis to establish more firmly the various coordination modes of tellurium. In each study the unit cell dimensions and intensity data were collected using an Enraf-Nonius CAD-4, four circle diffractometer. The raw data collected in turn was transferred to the Birmingham University Honeywell Multics System and processed using the appropriate computer packages for the determination of crystal structures. The molecular and crystal structures of: bis[2-(2-pyridyl)phenyl]tritelluride, bis[2-(N-hydroxy)iminophenyl] ditelluride, 2-(2-pyridyl)phenyltellurium(IV) tribromide, (2-N,N-dimethylbenzylamine-C,N')tellurium(IV)tribromide, 2-dichloro(butyl)tellurobenzaldehyde, 2-dichlorobutotelluro-N-dimethylbenzyl ammonium chloride, dimethyldithiocarbamato[2-(2-pyridyl)phenyl]tellurium(II), dimethyldithiocarbamato[2-(2-quinolinyl)phenyl]tellurium(II) and para-ethoxypheny[2-(2-pyridyl)phenyl]telluride are described. In each structure, the Lewis acidity of tellurium appears to be satisfied by autocomplex formation, through short-range intramolecular secondary bonds between tellurium and an electron denoting species, (generally nitrogen in these structures) with long range weak inter molecular contacts forming in the majority of the tellurium(IV) structures. The order of Lewis acidity in each structure can be considered to be reflected by the length of the short range intramolecular secondary bond, identified, that is, when tellurium has a low Lewis acidity this interaction is long. Interestingly, no primary bonds are found trans to a Te-C covalent bond in any of the above structures, highlighting the strong trans effect of aromatic and aryl groups in tellurium complexes.
Resumo:
The cationic polymerisation of various monomers, including cyclic ethers bearing energetic nitrate ester (-ON02) groups, substituted styrenes and isobutylene has been investigated. The main reaction studied has been the ring-opening polymerisation of 3- (nitratomethyl)-3-methyl oxetane (NIMMO) using the alcohol/BF3.0Et2 binary initiator system. A series of di-, tri- and tetrafunctional telechelic polymers has been synthesised. In order to optimise the system, achieve controlled molecular weight polymers and understand the mechanism of polymerisation the effects of certain parameters on the molecular weight distribution, as determined by Size Exclusion Chromatography, have been examined. This shows the molecular weight achieved depends on a combination of factors including -OH concentration, addition rate of monomer and, most importantly, temperature. A lower temperature and OH concentration tends to produce higher molecular weight, whereas, slower addition rates of monomer, either have no significant effect or produce a lower molecular weight polymer. These factors were used to increase the formation of a cyclic oligomer, by a side reaction, and suggest, that the polymerisation of NIMMO is complicated with endbiting and back biting reactions, along with other transfer/termination processes. These observations appear to fit the model of an active-chain end mechanism. Another cyclic monomer, glycidyl nitrate (GLYN), has been polymerised by the activated monomer mechanism. Various other monomers have been used to end-cap the polymer chains to produce hydroxy ends which are expected to form more stable urethane links, than the glycidyl nitrate ends, when cured with isocyanates. A novel monomer, butadiene oxide dinitrate (BODN), has been prepared and its homopolymerisation and copolymerisation with GL YN studied. In concurrent work the carbocationic polymerisations of isobutylene or substituted styrenes have been studied. Materials with narrow molecular weight distributions have been prepared using the diphenyl phosphate/BCl3 initiator. These systems and monomers are expected to be used in the synthesis of thermoplastic elastomers.