22 resultados para subjective evaluation
em Aston University Research Archive
Resumo:
Purpose. To compare visual function with the Bausch & Lomb PureVision multifocal contact lens to monovision with PureVision single vision contact lenses. Methods. Twenty presbyopic subjects were fitted with either the PureVision multifocal contact lens or monovision with PureVision singlevision lenses. Aftera 1-month trial, the following assessments of visual function were made: (a) distance, intermediate, and near visual acuity (VA); (b) reading ability; (c) distance and near contrast sensitivity function (CSF); (d) near range of clear vision; (e) stereoacuity; and (f) subjective evaluation of near vision ability with a standardized questionnaire. Subjects were then refitted with the alternative correction and the procedure was repeated. All measurements were compared between the two corrections, whereas the ``low addition'' multifocal lens was also compared with the ``high addition'' alternative. Results. Distance and near VA were significantly better with monovision than with the multifocal option (p < 0.05). Intermediate VA (p = 0.13) was similar with both corrections, whereas there was also no significant difference in distance and near CSF (p = 0.29 on both occasions). Reading speeds (p = 0.48) and the critical print size (p = 0.90) were not significantly different between the two contact lens corrections, but stereoacuity (p < 0.01) and the near range of clear vision (p < 0.05) were significantly better with the multifocal option than with monovision. Subjective assessment of near ability was similar for both types of contact lens (p = 0.52). The high addition multifocal lens produced significantly poorer distance and near CSF, near VA, and critical print size compared with the low addition alternative. Conclusions. Monovision performed better than a center-near aspheric simultaneous vision multifocal contact lens of the same material for distance and near VA only. The multifocal option provides better stereoacuity and near range of clear vision, with little differences in CSF, so a better balance of real-world visual function may be achieved due to minimal binocular disruption. (Optom Vis Sci 2009;86:98-105)
Resumo:
A sizeable amount of the testing in eye care, requires either the identification of targets such as letters to assess functional vision, or the subjective evaluation of imagery by an examiner. Computers can render a variety of different targets on their monitors and can be used to store and analyse ophthalmic images. However, existing computing hardware tends to be large, screen resolutions are often too low, and objective assessments of ophthalmic images unreliable. Recent advances in mobile computing hardware and computer-vision systems can be used to enhance clinical testing in optometry. High resolution touch screens embedded in mobile devices, can render targets at a wide variety of distances and can be used to record and respond to patient responses, automating testing methods. This has opened up new opportunities in computerised near vision testing. Equally, new image processing techniques can be used to increase the validity and reliability of objective computer vision systems. Three novel apps for assessing reading speed, contrast sensitivity and amplitude of accommodation were created by the author to demonstrate the potential of mobile computing to enhance clinical measurement. The reading speed app could present sentences effectively, control illumination and automate the testing procedure for reading speed assessment. Meanwhile the contrast sensitivity app made use of a bit stealing technique and swept frequency target, to rapidly assess a patient’s full contrast sensitivity function at both near and far distances. Finally, customised electronic hardware was created and interfaced to an app on a smartphone device to allow free space amplitude of accommodation measurement. A new geometrical model of the tear film and a ray tracing simulation of a Placido disc topographer were produced to provide insights on the effect of tear film breakdown on ophthalmic images. Furthermore, a new computer vision system, that used a novel eye-lash segmentation technique, was created to demonstrate the potential of computer vision systems for the clinical assessment of tear stability. Studies undertaken by the author to assess the validity and repeatability of the novel apps, found that their repeatability was comparable to, or better, than existing clinical methods for reading speed and contrast sensitivity assessment. Furthermore, the apps offered reduced examination times in comparison to their paper based equivalents. The reading speed and amplitude of accommodation apps correlated highly with existing methods of assessment supporting their validity. Their still remains questions over the validity of using a swept frequency sine-wave target to assess patient’s contrast sensitivity functions as no clinical test provides the range of spatial frequencies and contrasts, nor equivalent assessment at distance and near. A validation study of the new computer vision system found that the authors tear metric correlated better with existing subjective measures of tear film stability than those of a competing computer-vision system. However, repeatability was poor in comparison to the subjective measures due to eye lash interference. The new mobile apps, computer vision system, and studies outlined in this thesis provide further insight into the potential of applying mobile and image processing technology to enhance clinical testing by eye care professionals.
Resumo:
The principal theme of this thesis is the identification of additional factors affecting, and consequently to better allow, the prediction of soft contact lens fit. Various models have been put forward in an attempt to predict the parameters that influence soft contact lens fit dynamics; however, the factors that influence variation in soft lens fit are still not fully understood. The investigations in this body of work involved the use of a variety of different imaging techniques to both quantify the anterior ocular topography and assess lens fit. The use of Anterior-Segment Optical Coherence Tomography (AS-OCT) allowed for a more complete characterisation of the cornea and corneoscleral profile (CSP) than either conventional keratometry or videokeratoscopy alone, and for the collection of normative data relating to the CSP for a substantial sample size. The scleral face was identified as being rotationally asymmetric, the mean corneoscleral junction (CSJ) angle being sharpest nasally and becoming progressively flatter at the temporal, inferior and superior limbal junctions. Additionally, 77% of all CSJ angles were within ±50 of 1800, demonstrating an almost tangential extension of the cornea to form the paralimbal sclera. Use of AS-OCT allowed for a more robust determination of corneal diameter than that of white-to-white (WTW) measurement, which is highly variable and dependent on changes in peripheral corneal transparency. Significant differences in ocular topography were found between different ethnicities and sexes, most notably for corneal diameter and corneal sagittal height variables. Lens tightness was found to be significantly correlated with the difference between horizontal CSJ angles (r =+0.40, P =0.0086). Modelling of the CSP data gained allowed for prediction of up to 24% of the variance in contact lens fit; however, it was likely that stronger associations and an increase in the modelled prediction of variance in fit may have occurred had an objective method of lens fit assessment have been made. A subsequent investigation to determine the validity and repeatability of objective contact lens fit assessment using digital video capture showed no significant benefit over subjective evaluation. The technique, however, was employed in the ensuing investigation to show significant changes in lens fit between 8 hours (the longest duration of wear previously examined) and 16 hours, demonstrating that wearing time is an additional factor driving lens fit dynamics. The modelling of data from enhanced videokeratoscopy composite maps alone allowed for up to 77% of the variance in soft contact lens fit, and up to almost 90% to be predicted when used in conjunction with OCT. The investigations provided further insight into the ocular topography and factors affecting soft contact lens fit.
Resumo:
Due to the dynamic and mutihop nature of the Mobile Ad-hoc Network (MANET), voice communication over MANET may encounter many challenges. We set up a subjective quality evaluation model using ITU-T E-model with extension. And through simulation in NS-2, we evaluate how the following factors impact voice quality in MANET: the number of hops, the number of route breakages, the number of communication pairs and the background traffic. Using AODV as the underlying routing protocol, and with the MAC layer changed from 802.11 DCF to 802.11e EDCF, we observe that 802.11e is more suitable for implementating voice communication over MANET. © 2005 IEEE.
Resumo:
Purpose. A clinical evaluation of the Shin-Nippon NVision-K 5001 (also branded as the Grand Seiko WR-5100K) autorefractor (Japan) was performed to examine validity and repeatability compared with subjective refraction and Javal-Schiotz keratometry. Methods. Measurements of refractive error were performed on 198 eyes of 99 subjects (aged 23.2 ± 7.4 years) subjectively (noncycloplegic) by one masked optometrist and objectively with the NVision-K autorefractor by a second optometrist. Keratometry measurements using the NVision-K were compared with the Javal-Schiotz keratometer. Intrasession repeatability of the NVision-K was also assessed on all 99 subjects together with intersession repeatability on a separate occasion separated by 7 to 14 days. Results. Refractive error as measured by the NVision-K was found to be similar (p = 0.67) to subjective refraction (difference, 0.14 ± 0.35 D). It was both accurate and repeatable over a wide prescription range (-8.25 to +7.25 D). Keratometry as measured by the NVision-K was found to be similar (p > 0.50) to the Javal-Schiotz technique in both the horizontal and vertical meridians (horizontal: difference, 0.02 ± 0.09 mm; vertical: difference, 0.01 ± 0.14 mm). There was minimal bias, and the results were repeatable (horizontal: intersession difference, 0.00 ± 0.09 mm; vertical: intersession difference, -0.01 ± 0.12 mm). Conclusion. The open-view arrangement of the Shin-Nippon NVision-K 5001 facilitates the measurement of static refractive error and the accommodative response to real-world stimuli. Coupled with its accuracy, repeatability, and capability to measure corneal curvature, it is a valuable addition to objective instrumentation currently available to the optometrist and researcher.
Resumo:
Background: To evaluate the accuracy of an open-field autorefractor compared with subjective refraction in pseudophakes and hence its ability to assess objective eye focus with intraocular lenses (IOLs). Methods: Objective refraction was measured at 6 m using the Shin-Nippon NVision-K 5001/Grand Seiko WR-5100K open-field autorefractor (five repeats) and by subjective refraction on 141 eyes implanted with a spherical (Softec1 n=53), aspherical (SoftecHD n=37) or accommodating (1CU n=22; Tetraflex n=29) IOL. Autorefraction was repeated 2 months later. Results: The autorefractor prescription was similar (average difference: 0.09±0.53 D; p=0.19) to that found by subjective refraction, with ~71% within ±0.50 D. The horizontal cylindrical components were similar (difference: 0.00±0.39 D; p=0.96), although the oblique (J45) autorefractor cylindrical vector was slightly more negative (by -0.06±0.25 D; p=0.06) than the subjective refraction. The results were similar for each of the IOL designs except for the spherical IOL, where the mean spherical equivalent difference between autorefraction and subjective was more hypermetropic than the Tetraflex accommodating IOL (F=2.77, p=0.04). The intrasession repeatability was
Resumo:
Purpose To develop a standardized questionnaire of near visual function and satisfaction to complement visual function evaluations of presbyopic corrections. Setting Eye Clinic, School of Life and Health Sciences, Aston University, Midland Eye Institute and Solihull Hospital, Birmingham, United Kingdom. Design Questionnaire development. Methods A preliminary 26-item questionnaire of previously used near visual function items was completed by patients with monofocal intraocular lenses (IOLs), multifocal IOLs, accommodating IOLs, multifocal contact lenses, or varifocal spectacles. Rasch analysis was used for item reduction, after which internal and test–retest reliabilities were determined. Construct validity was determined by correlating the resulting Near Activity Visual Questionnaire (NAVQ) scores with near visual acuity and critical print size (CPS), which was measured using the Minnesota Low Vision Reading Test chart. Discrimination ability was assessed through receiver-operating characteristic (ROC) curve analysis. Results One hundred fifty patients completed the questionnaire. Item reduction resulted in a 10-item NAVQ with excellent separation (2.92), internal consistency (Cronbach a = 0.95), and test–retest reliability (intraclass correlation coefficient = 0.72). Correlations of questionnaire scores with near visual acuity (r = 0.32) and CPS (r = 0.27) provided evidence of validity, and discrimination ability was excellent (area under ROC curve = 0.91). Conclusion Results show the NAVQ is a reliable, valid instrument that can be incorporated into the evaluation of presbyopic corrections.
Resumo:
Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.
Resumo:
The topic of my research is consumer brand equity (CBE). My thesis is that the success or otherwise of a brand is better viewed from the consumers’ perspective. I specifically focus on consumers as a unique group of stakeholders whose involvement with brands is crucial to the overall success of branding strategy. To this end, this research examines the constellation of ideas on brand equity that have hitherto been offered by various scholars. Through a systematic integration of the concepts and practices identified but these scholars (concepts and practices such as: competitiveness, consumer searching, consumer behaviour, brand image, brand relevance, consumer perceived value, etc.), this research identifies CBE as a construct that is shaped, directed and made valuable by the beliefs, attitudes and the subjective preferences of consumers. This is done by examining the criteria on the basis of which the consumers evaluate brands and make brand purchase decisions. Understanding the criteria by which consumers evaluate brands is crucial for several reasons. First, as the basis upon which consumers select brands changes with consumption norms and technology, understanding the consumer choice process will help in formulating branding strategy. Secondly, an understanding of these criteria will help in formulating a creative and innovative agenda for ‘new brand’ propositions. Thirdly, it will also influence firms’ ability to simulate and mould the plasticity of demand for existing brands. In examining these three issues, this thesis presents a comprehensive account of CBE. This is because the first issue raised in the preceding paragraph deals with the content of CBE. The second issue addresses the problem of how to develop a reliable and valid measuring instrument for CBE. The third issue examines the structural and statistical relationships between the factors of CBE and the consequences of CBE on consumer perceived value (CPV). Using LISREL-SIMPLIS 8.30, the study finds direct and significant influential links between consumer brand equity and consumer value perception.
Resumo:
Safety enforcement practitioners within Europe and marketers, designers or manufacturers of consumer products need to determine compliance with the legal test of "reasonable safety" for consumer goods, to reduce the "risks" of injury to the minimum. To enable freedom of movement of products, a method for safety appraisal is required for use as an "expert" system of hazard analysis by non-experts in safety testing of consumer goods for implementation consistently throughout Europe. Safety testing approaches and the concept of risk assessment and hazard analysis are reviewed in developing a model for appraising consumer product safety which seeks to integrate the human factors contribution of risk assessment, hazard perception, and information processing. The model develops a system of hazard identification, hazard analysis and risk assessment which can be applied to a wide range of consumer products through use of a series of systematic checklists and matrices and applies alternative numerical and graphical methods for calculating a final product safety risk assessment score. It is then applied in its pilot form by selected "volunteer" Trading Standards Departments to a sample of consumer products. A series of questionnaires is used to select participating Trading Standards Departments, to explore the contribution of potential subjective influences, to establish views regarding the usability and reliability of the model and any preferences for the risk assessment scoring system used. The outcome of the two stage hazard analysis and risk assessment process is considered to determine consistency in results of hazard analysis, final decisions regarding the safety of the sample product and to determine any correlation in the decisions made using the model and alternative scoring methods of risk assessment. The research also identifies a number of opportunities for future work, and indicates a number of areas where further work has already begun.
Resumo:
This work is concerned with the development of techniques for the evaluation of large-scale highway schemes with particular reference to the assessment of their costs and benefits in the context of the current transport planning (T.P.P.) process. It has been carried out in close cooperation with West Midlands County Council, although its application and results are applicable elsewhere. The background to highway evaluation and its development in recent years has been described and the emergence of a number of deficiencies in current planning practise noted. One deficiency in particular stood out, that stemming from inadequate methods of scheme generation and the research has concentrated upon improving this stage of appraisal, to ensure that subsequent stages of design, assessment and implementation are based upon a consistent and responsive foundation. Deficiencies of scheme evaluation were found to stem from inadequate development of appraisal methodologies suffering from difficulties of valuation, measurement and aggregation of the disparate variables that characterise highway evaluation. A failure to respond to local policy priorities was also noted. A 'problem' rather than 'goals' based approach to scheme generation was taken, as it represented the current and foreseeable resource allocation context more realistically. A review of techniques with potential for highway problem based scheme generation, which would work within a series of practical and theoretical constraints were assessed and that of multivariate analysis, and classical factor analysis in particular, was selected, because it offerred considerable application to the difficulties of valuation, measurement and aggregation that existed. Computer programs were written to adapt classical factor analysis to the requirements of T.P.P. highway evaluation, using it to derive a limited number of factors which described the extensive quantity of highway problem data. From this, a series of composite problem scores for 1979 were derived for a case study area of south Birmingham, based upon the factorial solutions, and used to assess highway sites in terms of local policy issues. The methodology was assessed in the light of its ability to describe highway problems in both aggregate and disaggregate terms, to guide scheme design, coordinate with current scheme evaluation methods, and in general to improve upon current appraisal. Analysis of the results was both in subjective, 'common-sense' terms and using statistical methods to assess the changes in problem definition, distribution and priorities that emerged. Overall, the technique was found to improve upon current scheme generation methods in all respects and in particular in overcoming the problems of valuation, measurement and aggregation without recourse to unsubstantiated and questionable assumptions. A number of deficiencies which remained have been outlined and a series of research priorities described which need to be reviewed in the light of current and future evaluation needs.
Resumo:
The binding theme of this thesis is the examination of both phakic and pseudophakic accommodation by means of theoretical modelling and the application of a new biometric measuring technique. Anterior Segment Optical Coherence Tomography (AS-OCT) was used to assess phakic accommodative changes in 30 young subjects (19.4 2.0 years; range, 18 to 25 years). A new method of assessing curvature change with this technique was employed with limited success. Changes in axial accommodative spacing, however, proved to be very similar to those of the Scheimpflug-based data. A unique biphasic trend in the position of the posterior crystalline lens surface during accommodation was discovered, which has not been alluded to in the literature. All axial changes with accommodation were statistically significant (p < 0.01) with the exception of corneal thickness (p = 0.81). A two-year follow-up study was undertaken for a cohort of subjects previously implanted with a new accommodating intraocular lens (AIOL) (Lenstec Tetraflex KH3500). All measures of best corrected distance visual acuity (BCDVA; +0.04 0.24 logMAR), distance corrected near visual acuity (DCNVA; +0.61 0.17 logMAR) and contrast sensitivity (+1.35 0.21 log units) were good. The subjective accommodation response quantified with the push-up technique (1.53 0.64 D) and defocus curves (0.77 0.29 D) was greater than the objective stimulus response (0.21 0.19 D). AS-OCT measures with accommodation stimulus revealed a small mean posterior movement of the AIOLs (0.02 0.03 mm for a 4.0 D stimulus); this is contrary to proposed mechanism of the anterior focus-shift principle.
Resumo:
AIM: To determine the validity and reliability of the measurement of corneal curvature and non-invasive tear break-up time (NITBUT) measures using the Oculus Keratograph. METHOD: One hundred eyes of 100 patients had their corneal curvature assessed with the Keratograph and the Nidek ARKT TonorefII. NITBUT was then measured objectively with the Keratograph with Tear Film Scan software and subjectively with the Keeler Tearscope. The Keratograph measurements of corneal curvature and NITBUT were repeated to test reliability. The ocular sensitivity disease index questionnaire was completed to quantify ocular comfort. RESULTS: The Keratograph consistently measured significantly flatter corneal curvatures than the ARKT (MSE difference: +1.83±0.44D), but was repeatable (p>0.05). Keratograph NITBUT measurements were significantly lower than observation using the Tearscope (by 12.35±7.45s; pp < 0.001) and decreased on subsequent measurement (by -1.64 ± 6.03s; p < 0.01). The Keratograph measures the first time the tears break up anywhere on the cornea with 63% of subjects having NI-TBUT's <5s and a further 22% having readings between 5 and 10s. The Tearscope results were found to correlate better with the patients symptoms (r = -0.32) compared to the Keratograph (r = -0.19). Conclusions: The Keratograph requires a calibration off-set to be comparable to other keratometry devices. Its current software detects very early tear film changes, recording significantly lower NITBUT values than conventional subjective assessment. Adjustments to instrumentation software have the potential to enhance the value of Keratograph objective measures in clinical practice.
Resumo:
Accommodating Intraocular Lenses (IOLs), multifocal IOLs (MIOLs) and toric IOLs are designed to provide a greater level of spectacle independency post cataract surgery. All of these IOLs are reliant on the accurate calculation of intraocular lens power determined through reliable ocular biometry. A standardised defocus area metric and reading performance index metric were devised for the evaluation of the range of focus and the reading ability of subjects implanted with presbyopic correcting IOLs. The range of clear vision after implantation of an MIOL is extended by a second focal point; however, this results in the prevalence of dysphotopsia. A bespoke halometer was designed and validated to assess this photopic phenomenon. There is a lack of standardisation in the methods used for determining IOL orientation and thus rotation. A repeatable, objective method was developed to allow the accurate assessment of IOL rotation, which was used to determine the rotational and positional stability of a closed loop haptic IOL. A new commercially available biometry device was validated for use with subjects prior to cataract surgery. The optical low coherence reflectometry instrument proved to be a valid method for assessing ocular biometry and covered a wider range of ocular parameters in comparison with previous instruments. The advantages of MIOLs were shown to include an extended range of clear vision translating into greater reading ability. However, an increased prevalence of dysphotopsia was shown with a bespoke halometer, which was dependent on the MIOL optic design. Implantation of a single optic accommodating IOL did not improve reading ability but achieved high subjective ratings of near vision. The closed-loop haptic IOL displayed excellent rotational stability in the late period but relatively poor rotational stability in the early period post implantation. The orientation error was compounded by the high frequency of positional misalignment leading to an extensive overall misalignment of the IOL. This thesis demonstrates the functionality of new IOL lens designs and the importance of standardised testing methods, thus providing a greater understanding of the consequences of implanting these IOLs. Consequently, the findings of the thesis will influence future designs of IOLs and testing methods.
Resumo:
Background: The aim was to evaluate the validity and repeatability of the auto-refraction function of the Nidek OPD-Scan III (Nidek Technologies, Gamagori, Japan) compared with non-cycloplegic subjective refraction. The Nidek OPD-Scan III is a new aberrometer/corneal topographer workstation based on the skiascopy principle. It combines a wavefront aberrometer, topographer, autorefractor, auto keratometer and pupillometer/pupillographer. Methods: Objective refraction results obtained using the Nidek OPD-Scan III were compared with non-cycloplegic subjective refraction for 108 eyes of 54 participants (29 female) with a mean age of 23.7±9.5 years. Intra-session and inter-session variability were assessed on 14 subjects (28 eyes). Results: The Nidek OPD-Scan III gave slightly more negative readings than results obtained by subjective refraction (Nidek mean difference -0.19±0.36 DS, p<0.01 for sphere; -0.19±0.35 DS, p<0.01 for mean spherical equivalent; -0.002±0.23 DC, p=0.91 for cylinder; -0.06±0.38 DC, p=0.30 for J0 and -0.36±0.31 DC for J45, p=0.29). Auto-refractor results for 74 per cent of spherical readings and 60 per cent of cylindrical powers were within±0.25 of subjective refraction. There was high intra-session and inter-session repeatability for all parameters; 90 per cent of inter-session repeatability results were within 0.25 D. Conclusion: The Nidek OPD-Scan III gives valid and repeatable measures of objective refraction when compared with non-cycloplegic subjective refraction. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.