8 resultados para structure-reactivity

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature processing of solvothermally synthesised MgO nanoparticles promotes striking changes in their morphology, and surface chemical and electronic structure. As-prepared NanoMgO comprised ∼4 nm cubic periclase nanocrystals, interspersed within an amorphous Mg(OH)(OCH3) matrix. These crystallites appear predominantly (1 0 0) terminated, and the overall material exhibits carbonate and hydroxyl surface functionalities of predominantly weak/moderate base character. Heating promotes gradual crystallisation and growth of the MgO nanoparticles, and concomitant loss of Mg(OH)(OCH3). In situ DRIFTS confirms the residual precursor and surface carbonate begin to decompose above 300 °C, while in situ XPS shows these morphological changes are accompanied by the disappearance of surface hydroxyl/methoxide species and genesis of O- centres which enhance both the surface density and basicity of the resulting stepped and defective MgO nanocrystals. The catalytic performance in tributyrin transesterification with methanol is directly proportional to the density of strong surface base sites. © 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of [Mg(1−x)Alx(OH)2]x+(CO3)x/n2− hydrotalcite materials with compositions over the range x = 0.25–0.55 have been synthesised using an alkali-free coprecipitation route. All materials exhibit XRD patterns characteristic of the hydrotalcite phase with a steady lattice expansion observed with increasing Mg content. XPS measurements reveal a decrease in both the Al and Mg photoelectron binding energies with Mg incorporation which correlates with the increased intra-layer electron density. All materials are effective catalysts for the liquid phase transesterification of glyceryl tributyrate with methanol for biodiesel production. The rate increases steadily with Mg content, with the Mg rich Mg2.93Al catalyst an order of magnitude more active than MgO, with pure Al2O3 being completely inert. The rate of reaction also correlates with intralayer electron density which can be associated with increased basicity.© 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution of a Pd/C catalyst during the liquid phase selective aerobic oxidation of cinnamyl alcohol has been followed by in situ XAFS and XPS. The fresh catalyst comprised highly dispersed, heavily oxidised Pd particles. Cinnamyl alcohol oxidation resulted in the rapid reduction of surface palladium oxide and a small degree of concomitant particle growth. These structural changes coincided with a large drop in catalytic activity. Prereduced Pd/C exhibited a significantly lower initial oxidation rate demonstrating the importance of surface metal oxide in effecting catalytic oxidation. Use of a Pd black model system confirmed that the oxide→metal transformation was the cause, and not result, of catalyst deactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of mesoporous sulphated zirconias with tuneable structural and catalytic properties have been prepared by direct impregnation. The surface sulphate coverage can be readily varied, achieving a maximum value of ∼0.2 monolayers. High-temperature calcination induces the crystallisation of tetragonal zirconia while suppressing the monoclinic phase and enhances surface acidity. Superacid sites only appear above a critical threshold SO4 coverage of 0.08 mL (corresponding to 0.44 wt% total S). Sulphated zirconias show good activity towards α-pinene isomerisation of under mild conditions. Conversion correlates with the number Brønsted acid sites, while the selectivity towards mono- versus polycyclic products depends on the corresponding acid site strength; superacidity promotes limonene formation over camphene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel macroporous solid bases have been developed as alternative clean technologies to existing commercial homogeneous catalysts for the production of biodiesel from triglycerides; the latter suffer process disadvantages including complex separation and associated saponification and engine corrosion, and are unsuitable for continuous operation. To this end, tuneable macroporous MgAl hydrotalcites have been prepared by an alkali-free route and characterised by TGA, XRD, SEM and XPS. The macropore architecture improves diffusion of bulky triglyceride molecules to the active base sites, increasing activity. Lamellar and macroporous hydrotalcites will be compared for the transesterification of both model and plant oil feedstocks, and structure-reactivity relations identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A range of mesoporous solid sulphonic acid catalysts have been prepared from a mercaptopropyl-trimethoxysilane (MPTS) precursor by sol-gel synthesis. The creation of surface sulphonic acid functionality via thiol oxidation has been followed by XPS and Raman spectroscopy. It is possible to continuously vary the sulphonic acid loading from 1 to 12wt.% while maintaining pore volume and mesostructure. The resulting materials exhibit high thermal stability and acid strength across the composition range and show good activity and selectivity in esterification and condensation reactions. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.