3 resultados para structure adaptive
em Aston University Research Archive
Resumo:
The concern over the quality of delivering video streaming services in mobile wireless networks is addressed in this work. A framework that enhances the Quality of Experience (QoE) of end users through a quality driven resource allocation scheme is proposed. To play a key role, an objective no-reference quality metric, Pause Intensity (PI), is adopted to derive a resource allocation algorithm for video streaming. The framework is examined in the context of 3GPP Long Term Evolution (LTE) systems. The requirements and structure of the proposed PI-based framework are discussed, and results are compared with existing scheduling methods on fairness, efficiency and correlation (between the required and allocated data rates). Furthermore, it is shown that the proposed framework can produce a trade-off between the three parameters through the QoE-aware resource allocation process.
Resumo:
Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.
Resumo:
For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates. © 2010 Stich et al.