18 resultados para structure, analysis, modeling
em Aston University Research Archive
Resumo:
A multi-variate descriptive model of environmental and nature conservation attitudes and values is proposed and empirically supported. A mapping sentence is developed out of analysis of data from a series of Repertory Grid interviews addressing conservation employees' attitudes towards their profession's activities. The research is carried out within the meta-theoretical framework of Facet Theory. A mapping sentence is developed consisting of 9 facets. From the mapping sentence 3 questionnaires were constructed viewing the selective orientations towards environmental concern. A mapping sentence and facet model is developed for each study. Once the internal structure of this model had been established using Similarity Structure Analysis, the elements of the facets are subjected to Partial Order Scalogram Analysis with base coordinates. A questionnaire was statistically analysed to assess the relationship between facet elements and 4 measures of attitudes towards, and involvement with, conservation. This enabled the comparison of the relative strengths of attitudes associated with each facet element and each measure of conservation attitude. In general, the relationship between the social value of conservation and involvement pledges to conservation were monotonic; perceived importance of a conservation issue appearing predictive of personal involvement. Furthermore, the elements of the life area and scale facets were differentially related to attitude measures. The multi-variate descriptive model of environmental conservation values and attitudes is discussed in relation to its implications for psychological research into environmental concern and for environmental and nature conservation.
Resumo:
A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.
Resumo:
Receptor activity modifying protein 1 (RAMP1) is an integral component of several receptors including the calcitonin gene-related peptide (CGRP) receptor. It forms a complex with the calcitonin receptor-like receptor (CLR) and is required for receptor trafficking and ligand binding. The N-terminus of RAMP1 comprises three helices. The current study investigated regions of RAMP1 important for CGRP or CLR interactions by alanine mutagenesis. Modeling suggested the second and third helices were important in protein-protein interactions. Most of the conserved residues in the N-terminus (M48, W56, Y66, P85, N66, H97, F101, D113, P114, P115), together with a further 13 residues spread throughout three helices of RAMP1, were mutated to alanine and coexpressed with CLR in Cos 7 cells. None of the mutations significantly reduced RAMP expression. Of the nine mutants from helix 1, only M48A had any effect, producing a modest reduction in trafficking of CLR to the cell surface. In helix 2 Y66A almost completely abolished CLR trafficking; L69A and T73A reduced the potency of CGRP to produce cAMP. In helix 3, H97A abolished CLR trafficking; P85A, N86A, and F101A had caused modest reductions in CLR trafficking and also reduced the potency of CGRP on cAMP production. F93A caused a modest reduction in CLR trafficking alone and L94A increased cAMP production. The data are consistent with a CLR recognition site particularly involving Y66 and H97, with lesser roles for adjacent residues in helix 3. L69 and T73 may contribute to a CGRP recognition site in helix 2 also involving nearby residues.
Resumo:
The role of receptor activity modifying protein 1 (RAMP1) in forming receptors with the calcitonin receptor-like receptor (CLR) and the calcitonin receptor (CTR) was examined by producing chimeras between RAMP1 and RAMP3. RAMPs have three extracellular helices. Exchange of helix 1 of the RAMPs or residues 62-69 in helix 2 greatly reduced CLR trafficking (a marker for CLR association). Modeling suggests that these exchanges alter the CLR recognition site on RAMP1, which is more exposed than on RAMP3. Exchange of residues 86-89 of RAMP1 had no effect on the trafficking of CLR but reduced the potency of human (h) alphaCGRP and adrenomedullin. However, these alterations to RAMP1 had no effect on the potency of hbetaCGRP. These residues of RAMP1 lie at the junction of helix 3 and its connecting loop with helix 2. Modeling suggests that the loop is more exposed in RAMP1 than RAMP3; it may play an important role in peptide binding, either directly or indirectly. Exchange of residues 90-94 of RAMP1 caused a modest reduction in CLR expression and a 15-fold decrease in CGRP potency. It is unlikely that the decrease in expression is enough to explain the reduction in potency, and so these may have dual roles in recognizing CLR and CGRP. For CTR, only 6 out of 26 chimeras covering the extracellular part of RAMP1 did not reduce agonist potency. Thus the association of CTR with RAMP1 seems more sensitive to changes in RAMP1 structure induced by the chimeras than is CLR.
Resumo:
Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.
Resumo:
This paper assesses the extent to which the equity markets of Hungary, Poland the Czech Republic and Russia have become less segmented. Using a variety of tests it is shown there has been a consistent increase in the co-movement of some Eastern European markets and developed markets. Using the variance decompositions from a vector autoregressive representation of returns it is shown that for Poland and Hungary global factors are having an increasing influence on equity returns, suggestive of increased equity market integration. In this paper we model a system of bivariate equity market correlations as a smooth transition logistic trend model in order to establish how rapidly the countries of Eastern Europe are moving away from market segmentation. We find that Hungary is the country which is becoming integrated the most quickly. © 2005 ELsevier Ltd. All rights reserved.
Resumo:
Orthodox contingency theory links effective organisational performance to compatible relationships between the environment and organisation strategy and structure and assumes that organisations have the capacity to adapt as the environment changes. Recent contributions to the literature on organisation theory claim that the key to effective performance is effective adaptation which in turn requires the simultaneous reconciliation of efficiency and innovation which is afforded by an unique environment-organisation configuration. The literature on organisation theory recognises the continuing confusion caused by the fragmented and often conflicting results from cross-sectional studies. Although the case is made for longitudinal studies which comprehensively describe the evolving relationship between the environment and the organisation there is little to suggest how such studies should be executed in practice. Typically the choice is between the approaches of the historicised case study and statistical analysis of large populations which examine the relationship between environment and organisation strategy and/or structure and ignore the product-process relationship. This study combines the historicised case study and the multi-variable and ordinal scale approach of statistical analysis to construct an analytical framework which tracks and exposes the environment-organisation-performance relationship over time. The framework examines changes in the environment, strategy and structure and uniquely includes an assessment of the organisation's product-process relationship and its contribution to organisational efficiency and innovation. The analytical framework is applied to examine the evolving environment-organisation relationship of two organisations in the same industry over the same twenty-five year period to provide a sector perspective of organisational adaptation. The findings demonstrate the significance of the environment-organisation configuration to the scope and frequency of adaptation and suggest that the level of sector homogeneity may be linked to the level of product-process standardisation.
Resumo:
The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM(1) and AM(2), respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM(2)/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM(2) potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM(2) and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM(2) and CGRP receptors.
Resumo:
By conducting point-by-point inscription in a continuously moving slab of a pure fused silica at the optimal depth (170 μm depth below the surface), we have fabricated a 250-nm-period nanostructure with 30 nJ, 300 fs, 1 kHz pulses from frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports. The performed numerical modeling confirms the obtained experimental results.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Population measures for genetic programs are defined and analysed in an attempt to better understand the behaviour of genetic programming. Some measures are simple, but do not provide sufficient insight. The more meaningful ones are complex and take extra computation time. Here we present a unified view on the computation of population measures through an information hypertree (iTree). The iTree allows for a unified and efficient calculation of population measures via a basic tree traversal. © Springer-Verlag 2004.
Resumo:
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Resumo:
The performances of L-band EDFA are modeled and analyzed, based on C-band EDFA, through variation of pump power, ion concentration and fiber length. The fiber length promises higher performance than others. © 2005 Optical Society of America.