16 resultados para statistical speaker models
em Aston University Research Archive
Resumo:
This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.
Resumo:
We survey articles covering how hedge fund returns are explained, using largely non-linear multifactor models that examine the non-linear pay-offs and exposures of hedge funds. We provide an integrated view of the implicit factor and statistical factor models that are largely able to explain the hedge fund return-generating process. We present their evolution through time by discussing pioneering studies that made a significant contribution to knowledge, and also recent innovative studies that examine hedge fund exposures using advanced econometric methods. This is the first review that analyzes very recent studies that explain a large part of hedge fund variation. We conclude by presenting some gaps for future research.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.
Resumo:
We employ the methods of statistical physics to study the performance of Gallager type error-correcting codes. In this approach, the transmitted codeword comprises Boolean sums of the original message bits selected by two randomly-constructed sparse matrices. We show that a broad range of these codes potentially saturate Shannon's bound but are limited due to the decoding dynamics used. Other codes show sub-optimal performance but are not restricted by the decoding dynamics. We show how these codes may also be employed as a practical public-key cryptosystem and are of competitive performance to modern cyptographical methods.
Resumo:
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.
Resumo:
We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.
Resumo:
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.
Resumo:
Information systems have developed to the stage that there is plenty of data available in most organisations but there are still major problems in turning that data into information for management decision making. This thesis argues that the link between decision support information and transaction processing data should be through a common object model which reflects the real world of the organisation and encompasses the artefacts of the information system. The CORD (Collections, Objects, Roles and Domains) model is developed which is richer in appropriate modelling abstractions than current Object Models. A flexible Object Prototyping tool based on a Semantic Data Storage Manager has been developed which enables a variety of models to be stored and experimented with. A statistical summary table model COST (Collections of Objects Statistical Table) has been developed within CORD and is shown to be adequate to meet the modelling needs of Decision Support and Executive Information Systems. The COST model is supported by a statistical table creator and editor COSTed which is also built on top of the Object Prototyper and uses the CORD model to manage its metadata.
Resumo:
This paper uses a feminist post-structuralist approach to examine the gendered identities of a sample of British business leaders in Britain. While recent national surveys offer many material reasons why women are acutely under-represented as business leaders, the role of language is rarely addressed. This paper explores the ways in which ten senior women and men construct their sense of leadership identities through the medium of interview narratives. Drawing upon two poststructuralist models of analysis (Derrida’s 1987 theory of deconstruction and Bakhtin’s 1927/1981 concept of double-voiced discourse), the paper shows how both females and males are able to shift pragmatically between interwoven corporate discourses, which demand competing cultural allegiances from one moment to the next, allegiances constantly tested by the rapid change and uncertainty that characterise global business. While male leaders experience a relative freedom of movement between different cultural discourses, female leaders are circumscribed by negative and reductive representations of female speech and behaviour. In sum, senior women are required constantly to observe, review, police and repair their use of leadership language, which potentially undermines their confidence and authority as leaders.
Resumo:
This thesis describes the procedure and results from four years research undertaken through the IHD (Interdisciplinary Higher Degrees) Scheme at Aston University in Birmingham, sponsored by the SERC (Science and Engineering Research Council) and Monk Dunstone Associates, Chartered Quantity Surveyors. A stochastic networking technique VERT (Venture Evaluation and Review Technique) was used to model the pre-tender costs of public health, heating ventilating, air-conditioning, fire protection, lifts and electrical installations within office developments. The model enabled the quantity surveyor to analyse, manipulate and explore complex scenarios which previously had defied ready mathematical analysis. The process involved the examination of historical material costs, labour factors and design performance data. Components and installation types were defined and formatted. Data was updated and adjusted using mechanical and electrical pre-tender cost indices and location, selection of contractor, contract sum, height and site condition factors. Ranges of cost, time and performance data were represented by probability density functions and defined by constant, uniform, normal and beta distributions. These variables and a network of the interrelationships between services components provided the framework for analysis. The VERT program, in this particular study, relied upon Monte Carlo simulation to model the uncertainties associated with pre-tender estimates of all possible installations. The computer generated output in the form of relative and cumulative frequency distributions of current element and total services costs, critical path analyses and details of statistical parameters. From this data alternative design solutions were compared, the degree of risk associated with estimates was determined, heuristics were tested and redeveloped, and cost significant items were isolated for closer examination. The resultant models successfully combined cost, time and performance factors and provided the quantity surveyor with an appreciation of the cost ranges associated with the various engineering services design options.
Resumo:
Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.
Resumo:
Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics.
Resumo:
Recently, temporal and statistical properties of quasi-CW fiber lasers have attracted a great attention. In particular, properties of Raman fiber laser (RFLs) have been studied both numerically and experimentally [1,2]. Experimental investigation is more challengeable, as the full generation optical bandwidth (typically hundreds of GHz for RFLs) is much bigger than real-time bandwidth of oscilloscopes (up to 60GHz for the newest models). So experimentally measured time dynamics is highly bandwidth averaged and do not provide precise information about overall statistical properties. To overpass this, one can use the spectral filtering technique to study temporal and statistical properties within optical bandwidth comparable with measurement bandwidth [3] or indirect measurements [4]. Ytterbium-doped fiber lasers (YDFL) are more suitable for experimental investigation, as their generation spectrum usually 10 times narrower. Moreover, recently ultra-narrow-band generation has been demonstrated in YDFL [5] which provides in principle possibility to measure time dynamics and statistics in real time using conventional oscilloscopes. © 2013 IEEE.
Resumo:
Around 80% of the 63 million people in the UK live in urban areas where demand for affordable housing is highest. Supply of new dwellings is a long way short of demand and with an average annual replacement rate of 0.5% more than 80% of the existing residential housing stock will still be in use by 2050. A high proportion of owner-occupiers, a weak private rental sector and lack of sustainable financing models render England’s housing market one of the least responsive in the developed world. As an exploratory research the purpose of this paper is to examine the provision of social housing in the United Kingdom with a particular focus on England, and to set out implications for housing associations delivering sustainable community development. The paper is based on an analysis of historical data series (Census data), current macro-economic data and population projections to 2033. The paper identifies a chronic undersupply of affordable housing in England which is likely to be exacerbated by demographic development, changes in household composition and reduced availability of finance to develop new homes. Based on the housing market trends analysed in this paper opportunities are identified for policy makers to remove barriers to the delivery of new affordable homes and for social housing providers to evolve their business models by taking a wider role in sustainable community development.