3 resultados para statistical science
em Aston University Research Archive
Resumo:
We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.
Resumo:
The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.
Resumo:
Purpose - Measurements obtained from the right and left eye of a subject are often correlated whereas many statistical tests assume observations in a sample are independent. Hence, data collected from both eyes cannot be combined without taking this correlation into account. Current practice is reviewed with reference to articles published in three optometry journals, viz., Ophthalmic and Physiological Optics (OPO), Optometry and Vision Science (OVS), Clinical and Experimental Optometry (CEO) during the period 2009–2012. Recent findings - Of the 230 articles reviewed, 148/230 (64%) obtained data from one eye and 82/230 (36%) from both eyes. Of the 148 one-eye articles, the right eye, left eye, a randomly selected eye, the better eye, the worse or diseased eye, or the dominant eye were all used as selection criteria. Of the 82 two-eye articles, the analysis utilized data from: (1) one eye only rejecting data from the adjacent eye, (2) both eyes separately, (3) both eyes taking into account the correlation between eyes, or (4) both eyes using one eye as a treated or diseased eye, the other acting as a control. In a proportion of studies, data were combined from both eyes without correction. Summary - It is suggested that: (1) investigators should consider whether it is advantageous to collect data from both eyes, (2) if one eye is studied and both are eligible, then it should be chosen at random, and (3) two-eye data can be analysed incorporating eyes as a ‘within subjects’ factor.