10 resultados para static analysis
em Aston University Research Archive
Resumo:
Linear typing schemes can be used to guarantee non-interference and so the soundness of in-place update with respect to a functional semantics. But linear schemes are restrictive in practice, and more restrictive than necessary to guarantee soundness of in-place update. This limitation has prompted research into static analysis and more sophisticated typing disciplines to determine when in-place update may be safely used, or to combine linear and non-linear schemes. Here we contribute to this direction by defining a new typing scheme that better approximates the semantic property of soundness of in-place update for a functional semantics. We begin from the observation that some data are used only in a read-only context, after which it may be safely re-used before being destroyed. Formalising the in-place update interpretation in a machine model semantics allows us to refine this observation, motivating three usage aspects apparent from the semantics that are used to annotate function argument types. The aspects are (1) used destructively, (2), used read-only but shared with result, and (3) used read-only and not shared with the result. The main novelty is aspect (2), which allows a linear value to be safely read and even aliased with a result of a function without being consumed. This novelty makes our type system more expressive than previous systems for functional languages in the literature. The system remains simple and intuitive, but it enjoys a strong soundness property whose proof is non-trivial. Moreover, our analysis features principal types and feasible type reconstruction, as shown in M. Konen'y (In TYPES 2002 workshop, Nijmegen, Proceedings, Springer-Verlag, 2003).
Resumo:
Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.
Resumo:
In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.
Resumo:
We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinson's implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.
Resumo:
This thesis addresses the kineto-elastodynamic analysis of a four-bar mechanism running at high-speed where all links are assumed to be flexible. First, the mechanism, at static configurations, is considered as structure. Two methods are used to model the system, namely the finite element method (FEM) and the dynamic stiffness method. The natural frequencies and mode shapes at different positions from both methods are calculated and compared. The FEM is used to model the mechanism running at high-speed. The governing equations of motion are derived using Hamilton's principle. The equations obtained are a set of stiff ordinary differential equations with periodic coefficients. A model is developed whereby the FEM and the dynamic stiffness method are used conjointly to provide high-precision results with only one element per link. The principal concern of the mechanism designer is the behaviour of the mechanism at steady-state. Few algorithms have been developed to deliver the steady-state solution without resorting to costly time marching simulation. In this study two algorithms are developed to overcome the limitations of the existing algorithms. The superiority of the new algorithms is demonstrated. The notion of critical speeds is clarified and a distinction is drawn between "critical speeds", where stresses are at a local maximum, and "unstable bands" where the mechanism deflections will grow boundlessly. Floquet theory is used to assess the stability of the system. A simple method to locate the critical speeds is derived. It is shown that the critical speeds of the mechanism coincide with the local maxima of the eigenvalues of the transition matrix with respect to the rotational speed of the mechanism.
Resumo:
Objectives and Methods: Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. Results: The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. Conclusions: No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable. © 2013 Contact Lens Association of Ophthalmologists.
Resumo:
The Retinal Vessel Analyser (RVA) is a commercially available ophthalmoscopic instrument capable of acquiring vessel diameter fluctuations in real time and in high temporal resolution. Visual stimulation by means of flickering light is a unique exploration tool of neurovascular coupling in the human retina. Vessel reactivity as mediated by local vascular endothelial vasodilators and vasoconstrictors can be assessed non-invasively, in vivo. In brief, the work in this thesis • deals with interobserver and intraobserver reproducibility of the flicker responses in healthy volunteers • explains the superiority of individually analysed reactivity parameters over vendorgenerated output • links in static retinal measures with dynamic ones • highlights practical limitations in the use of the RVA that may undermine its clinical usefulness • provides recommendations for standardising measurements in terms of vessel location and vessel segment length and • presents three case reports of essential hypertensives in a -year follow-up. Strict standardisation of measurement procedures is a necessity when utilising the RVA system. Agreement between research groups on implemented protocols needs to be met, before it could be considered a clinically useful tool in detecting or predicting microvascular dysfunction.
Resumo:
Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
Resumo:
The impact of whole body vibrations (vibration stimulus mechanically transferred to the body) on muscular activity and neuromuscular response has been widely studied but without standard protocol and by using different kinds of exercises and parameters. In this study, we investigated how whole body vibration treatments affect electromyographic signal of rectus femoris during static and dynamic squat exercises. The aim was the identification of squat exercise characteristics useful to maximize neuromuscular activation and hence progress in training efficacy. Fourteen healthy volunteers performed both static and dynamic squat exercises without and with vibration treatments. Surface electromyographic signals of rectus femoris were recorded during the whole exercise and processed to reduce artifacts and to extract root mean square values. Paired t-test results demonstrated an increase of the root mean square values (p<0.05) in both static and dynamic squat exercises with vibrations respectively of 63% and 108%. For each exercise, subjects gave a rating of the perceived exertion according to the Borg's scale but there were no significant changes in the perceived exertion rate between exercises with and without vibration. Finally, results from analysis of electromyographic signals identified the static squat with WBV treatment as the exercise with higher neuromuscular system response. © 2012 IEEE.
Resumo:
Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.