9 resultados para state-selective differential cross sections
em Aston University Research Archive
Resumo:
In the present work, the elastic scattering of fast neutrons from iron and concrete samples were studied at incident neutron energies of 14.0 and 14.4 Mev, using a neutron spectrometer based on the associated particle time-of-flight technique. These samples were chosen because of their importance in the design of fusion reactor shielding and construction. Using the S.A.M.E.S. accelerator and the 3 M v Dynamitron accelerator at the Radiation Centre, 14.0 and 14.4 Mev neutrons were produced by the T(d, n)4He reaction at incident deuteron energies of 140 keV and 900 keV mass III ions respectively. The time of origin of the neutron was determined by detecting the associated alpha particles. The samples used were extended flat plates of thicknesses up to 1.73 mean free paths for iron and 2.3 mean free paths for concrete. The associated alpha particles and fast neutrons were detected by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The differential neutron elastic scattering cross-sections were measured for 14 Mev neutrons in various thicknesses of iron and concrete in the angular range from zero to 90°. In addition, the angular distributions of 14.4 Mev neutrons after passing through extended samples of iron were measured at several scattering angles in the same angular range. The measurements obtained for the thin sample of iron were compared with the results of Coon et al. The differential cross-sections for the thin iron sample were also analyzed on the optical model using the computer code RAROMP. For the concrete sample, the angular distribution of the thin sample was compared with the cross-sections calculated from the major constituent elements of concrete, and with the predicted values of the optical model for those elements. No published data could be found to compare with the results of the concrete differential cross-sections. In the case of thick samples of iron and concrete, the number of scattered neutrons were compared with a phenomological calculation based on the continuous slowing down model. The variation of measured cross-sections with sample thickness were found to follow the empirical relation σ = σ0 eαx. By using the universal constant "K", good fits were obtained to the experimental data. In parallel with the work at 14.0 and 14.4 Mev, an associated particle time-of-flight spectrometer was investigated which used the 2H(d,n)3He reaction for 3.02 Mev neutron energy at the incident deuteron energy of 1 Mev.
Resumo:
In this work, the angular distributions for elastic and. inelastic scattering of fast neutrons in fusion .reactor materials have been studied. Lithium and lead material are likely to be common components of fusion reactor wall configuration design. The measurements were performed using an associated particle time-of- flight technique. The 14 and 14.44 Mev neutrons were produced by the T(d,n} 4He reaction with deuterons being accelerated in a 150kev SAMES type J accelerator at ASTON and in.the 3. Mev DYNAMITRON at the Joint Radiation Centre, Birmingham respectively. The associated alpha-particles and fast. neutrons were detected.by means of a plastic scintillator mounted on a fast focused photomultiplier tube. The samples used were extended flat plates of thicknesses up to 0.9 mean-free-path for Lithium and 1.562 mean-free-path for Lead. The differential elastic scattering cross-sections were measured for 14 Mev neutrons for various thicknesses of Lithium and Lead in the angular range from zero to; 90º. In addition, the angular distributions of elastically scattered 14,.44 Mev .neutrons from Lithium samples were studied in the same angular range. Inelastic scattering to the 4.63 Mev state in 7Li and the 2.6 Mev state, and 4.1 Mev state in 208Pb have:been :measured.The results are compared to ENDF/B-IV data files and to previous measurements. For the Lead samples the differential neutron scattering:cross-sections for discrete 3 Mev ranges and the angular distributions were measured. The increase in effective cross-section due to multiple scattering effects,as the sample thickness increased:was found to be predicted by the empirical .relation ....... A good fit to the exoerimental data was obtained using the universal constant............ The differential elastic scattering cross-section data for thin samples of Lithium and Lead were analyzed in terms of optical model calculations using the. computer code. RAROMP. Parameter search procedures produced good fits to the·cross-sections. For the case of thick samples of Lithium and Lead, the measured angular distributions of :the scattered neutrons were compared to the predictions of the continuous slowing down model.
Resumo:
This thesis is concerned with the means by which the state in Britain has attempted to influence the technological development of private industry in the period 1945-1979. Particular emphasis is laid on assessing the abilities of technology policy measures to promote innovation. With that objective, the innovation literature is selectively reviewed to draw up an analytical framework to evaluate the innovation content of policy (Chapter 2). Technology policy is taken to consist of the specific measures utilised by government and its agents that affect the technological behaviour of firms. The broad sweep of policy during the period under consideration is described in Chapter 3 which concentrates on elucidating its institutional structure and the activities of the bodies involved. The empirical core of the thesis consists of three parallel case studies of policy toward the computer, machine tool and textile machinery industries (Chapters 4-6). The studies provide detailed historical accounts of the development and composition of policy, relating it to its specific institutional and industrial contexts. Each reveals a different pattern and level of state intervention. The thesis concludes with a comparative review of the findings of the case studies within a discussion centred on the arguments presented in Chapter 2. Topics arising include the state's differential support for the range of activities involved in innovation, the location of state-funded R&D, the encouragement of supplier-user contact, and the difficulties raised in adoption and diffusion.
Resumo:
The gamma-rays produced by the inelastic scattering of 14 MeV neutrons. in fusion reactor materials have been studied using a gamma-ray spectrometer employing a sodium iodide scintillation detector. The source neutrons are produced by the T(d,n)4He reaction using the SAMES accelerator at the University of Aston in Birmingham. In order to eliminate the large gamma-ray background and neutron signal due to the sensitivity of the sodium iodide detector to neutrons, the gamma-ray detector is heavily shielded and is used together with a particle time of flight discrimination system based on the associated particle time of flight method. The instant of production of a source neutron is determined by detecting the associated alpha-particle enabling discrimination between the neutrons and gamma-rays by their different time of flight times. The electronic system used for measuring the time of flight of the neutrons and gamrna-rays over the fixed flight path is described. The materials studied in this work were Lithium and Lead because of their importance as fuel breeding and shielding materials in conceptual fusion reactor designs. Several sample thicknesses were studied to determine the multiple scattering effects. The observed gamma-ray spectra from each sample at several scattering angles in the angular range Oº - 90° enabled absolute differential gamma-ray production cross-sections and angular distributions of the resolved gamma-rays from Lithium to be measured and compared with published data. For the Lead sample, the absolute differential gamma-ray production cross-sections for discrete 1 MeV ranges and the angular distributions were measured. The measured angular distributions of the present work and those on Iron from previous work are compared to the predictions of the Monte Carlo programme M.O.R.S.E. Good agreement was obtained between the experimental results and the theoretical predictions. In addition an empirical relation has been constructed which describes the multiple scattering effects by a single parameter and is capable of predicting the gamma-ray production cross-sections for the materials to an accuracy of ± 25%.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.