42 resultados para startup, software, project management, PMIS, Agile, Software project management, funzionalià
em Aston University Research Archive
Resumo:
Purpose - The main objective of the paper is to develop a risk management framework for software development projects from developers' perspective. Design/methodology/approach - This study uses a combined qualitative and quantitative technique with the active involvement of stakeholders in order to identify, analyze and respond to risks. The entire methodology has been explained using a case study on software development project in a public sector organization in Barbados. Findings - Analytical approach to managing risk in software development ensures effective delivery of projects to clients. Research limitations/implications - The proposed risk management framework has been applied to a single case. Practical implications - Software development projects are characterized by technical complexity, market and financial uncertainties and competent manpower availability. Therefore, successful project accomplishment depends on addressing those issues throughout the project phases. Effective risk management ensures the success of projects. Originality/value - There are several studies on managing risks in software development and information technology (IT) projects. Most of the studies identify and prioritize risks through empirical research in order to suggest mitigating measures. Although they are important to clients for future projects, these studies fail to provide any framework for risk management from software developers' perspective. Although a few studies introduced framework of risk management in software development, most of them are presented from clients' perspectives and very little effort has been made to integrate this with the software development cycle. As software developers absorb considerable amount of risks, an integrated framework for managing risks in software development from developers' perspective is needed. © Emerald Group Publishing Limited.
Resumo:
Despite the availability of various control techniques and project control software many construction projects still do not achieve their cost and time objectives. Research in this area so far has mainly been devoted to identifying causes of cost and time overruns. There is limited research geared towards studying factors inhibiting the ability of practitioners to effectively control their projects. To fill this gap, a survey was conducted on 250 construction project organizations in the UK, which was followed by face-to-face interviews with experienced practitioners from 15 of these organizations. The common factors that inhibit both time and cost control during construction projects were first identified. Subsequently 90 mitigating measures have been developed for the top five leading inhibiting factors—design changes, risks/uncertainties, inaccurate evaluation of project time/duration, complexities and non-performance of subcontractors were recommended. These mitigating measures were classified as: preventive, predictive, corrective and organizational measures. They can be used as a checklist of good practice and help project managers to improve the effectiveness of control of their projects.
Resumo:
Risks and uncertainties are part and parcel of any project as projects are planned with many assumptions. Therefore, managing those risks is the key to project success. Although risk is present in all most all projects, large-scale construction projects are most vulnerable. Risk is by nature subjective. However, managing risk subjectively posses the danger of non-achievement of project goals. This study introduces an analytical framework for managing risk in projects. All the risk factors are identified, their effects are analyzed, and alternative responses are derived with cost implication for mitigating the identified risks. A decision-making framework is then formulated using decision tree. The expected monetary values are derived for each alternative. The responses, which require least cost is selected. The entire methodology has been explained through a case study of an oil pipeline project in India and its effectiveness in managing projects has been demonstrated. © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING.
Resumo:
Effective management of projects is becoming increasingly important for any type of organization to remain competitive in today’s dynamic business environment due to pressure of globalization. The use of benchmarking is widening as a technique for supporting project management. Benchmarking can be described as the search for the best practices, leading to the superior performance of an organization. However, effectiveness of benchmarking depends on the use of tools for collecting and analyzing information and deriving subsequent improvement projects. This study demonstrates how analytic hierarchy process (AHP), a multiple attribute decision-making technique, can be used for benchmarking project management practices. The entire methodology has been applied to benchmark project management practice of Caribbean public sector organizations with organizations in the Indian petroleum sector, organizations in the infrastructure sector of Thailand and the UK. This study demonstrates the effectiveness of a proposed benchmarking model using AHP, determines problems and issues of Caribbean project management in the public sector and suggests improvement measures for effective project management.
Resumo:
Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.
Resumo:
The Indian petroleum industry is passing through a very dynamic business environment due to the liberalisation of many government policies, vertical integration among organisations and the presence of multinational companies. This caused a competitive environment among the organisations in the Indian petroleum industry in the public sector. Effective project management for developing new infrastructures and maintaining the existing facilities has been considered one of the means for remaining competitive in this business environment. However, present project management practices suffer from many shortcomings, as time, cost and quality non-achievements are part and parcel of almost every project. This study focuses on identifying the issues in managing projects of the organisation in the Indian petroleum sector with the involvement of the executives in a workshop environment. This also suggests some remedial measures for resolving those issues through identifying critical success factors and enablers. The enablers not only resolve the present issues but also ensure superior performance. These are analysed in a quantitative framework to derive improvement measures in project management practices.
Resumo:
Healthcare professionals routinely deploy various quality management tools and techniques in order to improve performance of healthcare delivery. However, they are characterised by fragmented approach i.e., they are not linked with the strategic intent of the organisation. This study introduces a holistic quality improvement method, which integrates all quality improvement projects with the strategic intent of the healthcare organisations. It first identifies a healthcare system and its environment. The Strengths, Weaknesses, Opportunities and Threats (SWOT) of the system are then derived with the involvement of the concerned stakeholders. This leads to developing the strategies in order to satisfy customers in line with the organisation's competitive position. These strategies help identify a few projects, the implementation of which ensures achievement of desired quality. The projects are then prioritised with the involvement of the concerned stakeholders and implemented in order to improve the system performance. The effectiveness of the method has been demonstrated using a case study of an intensive care unit at the Eric Williams Medical Sciences Complex Hospital in Trinidad. Copyright © 2007 Inderscience Enterprises Ltd.
Resumo:
In construction projects, the aim of project control is to ensure projects finish on time, within budget, and achieve other project objectives. During the last few decades, numerous project control methods have been developed and adopted by project managers in practice. However, many existing methods focus on describing what the processes and tasks of project control are; not on how these tasks should be conducted. There is also a potential gap between principles that underly these methods and project control practice. As a result, time and cost overruns are still common in construction projects, partly attributable to deficiencies of existing project control methods and difficulties in implementing them. This paper describes a new project cost and time control model, the project control and inhibiting factors management (PCIM) model, developed through a study involving extensive interaction with construction practitioners in the UK, which better reflects the real needs of project managers. A set of good practice checklist is also developed to facilitate implementation of the model. © 2013 American Society of Civil Engineers.
Resumo:
Most parametric software cost estimation models used today evolved in the late 70's and early 80's. At that time, the dominant software development techniques being used were the early 'structured methods'. Since then, several new systems development paradigms and methods have emerged, one being Jackson Systems Development (JSD). As current cost estimating methods do not take account of these developments, their non-universality means they cannot provide adequate estimates of effort and hence cost. In order to address these shortcomings two new estimation methods have been developed for JSD projects. One of these methods JSD-FPA, is a top-down estimating method, based on the existing MKII function point method. The other method, JSD-COCOMO, is a sizing technique which sizes a project, in terms of lines of code, from the process structure diagrams and thus provides an input to the traditional COCOMO method.The JSD-FPA method allows JSD projects in both the real-time and scientific application areas to be costed, as well as the commercial information systems applications to which FPA is usually applied. The method is based upon a three-dimensional view of a system specification as opposed to the largely data-oriented view traditionally used by FPA. The method uses counts of various attributes of a JSD specification to develop a metric which provides an indication of the size of the system to be developed. This size metric is then transformed into an estimate of effort by calculating past project productivity and utilising this figure to predict the effort and hence cost of a future project. The effort estimates produced were validated by comparing them against the effort figures for six actual projects.The JSD-COCOMO method uses counts of the levels in a process structure chart as the input to an empirically derived model which transforms them into an estimate of delivered source code instructions.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
The aim of this research was to improve the quantitative support to project planning and control principally through the use of more accurate forecasting for which new techniques were developed. This study arose from the observation that in most cases construction project forecasts were based on a methodology (c.1980) which relied on the DHSS cumulative cubic cost model and network based risk analysis (PERT). The former of these, in particular, imposes severe limitations which this study overcomes. Three areas of study were identified, namely growth curve forecasting, risk analysis and the interface of these quantitative techniques with project management. These fields have been used as a basis for the research programme. In order to give a sound basis for the research, industrial support was sought. This resulted in both the acquisition of cost profiles for a large number of projects and the opportunity to validate practical implementation. The outcome of this research project was deemed successful both in theory and practice. The new forecasting theory was shown to give major reductions in projection errors. The integration of the new predictive and risk analysis technologies with management principles, allowed the development of a viable software management aid which fills an acknowledged gap in current technology.
Resumo:
There has been little research in health and safety management concernmg the application of information technology to the field. This thesis attempts to stimulate interest in this area by analysing the value of proprietary health and safety software to proactive health and safety management. The thesis is based upon the detailed software evaluation of seven pieces of proprietary health and safety software. It features a discussion concerning the development of information technology and health and safety management, a review of the key issues identified during the software evaluations, an analysis of the commercial market for this type of software, and a consideration of the broader issues which surround the use of this software. It also includes practical guidance for the evaluation, selection, implementation and maintenance of all health and safety management software. This includes a comprehensive software evaluation chart. The implications of the research are considered for proprietary health and safety software, the application of information technology to health and safety management, and for future research.