7 resultados para sprays
em Aston University Research Archive
Resumo:
An extensive review of literature has been carried out concerning the drying of single drops, sprays of droplets and the prediction of spray drier performances. The experimental investigation has been divided into two broad parts mainly: (1) Single Drop Experiments, and (2) Spray Drying and Residence Time Distribution Experiments. The thermal conductivity of slurry cakes from five different sources have been experimentally determined using a modified Lee's Disc Apparatus and the data collected was correlated by the polynominal... Good agreement was observed between the experimental thermal conductivity values and the predicted ones. The fit gave a variance ... for the various samples experimented on. A mathematical model for estimating crust mass transfer coefficient at high drying temperatures was derived.
Resumo:
The literature on the evaporation of drops of pure liquids, drops containing solids and droplet sprays has been critically reviewed. An experimental study was undertaken on the drying of suspended drops of pure water and aqueous sodium sulphate decahydrate with concentrations varying from 5 to 54. 1 wt. %. Individual drops were suspended from a glass filament balance in a 26 mm I.D. vertical wind tunnel, designed and constructed to supply hot de-humidified air, to simulate conditions encountered in commercial spray driers. A novel thin film thermocouple was developed to facilitate the simultaneous measurement of drop weight and core temperature. The heat conduction through the thermocouple was reduced because of its unique design; using essentially a single 50μ diameter nickel wire. For pure water drops, the Nusselt number was found to be a function of the Reynolds, Prandtl and Transfer numbers for a temperature range between 19 to 79°C. Nu = 2 + 0.19 (1/B)0.24 Re0.5 Pr0.33 Two distinct periods were observed during the drying of aqueous sodium sulphate decahydrate. The first period was characterised by the evaporation from a free liquid surface, whilst drying in the second period was controlled by the crust resistance. Fracturing of the crust occurred randomly but was more frequent at higher concentrations and temperatures. A model was proposed for the drying of slurry drops, based on a receding evaporation interface. The model was solved numerically for the variation of core temperature, drop weight and crust thickness as a function of time. Experimental results were in excellent agreement with the model predictions although at higher temperatures modifications to the model had to be made to accommodate the unusual behaviour of sodium sulphate slurries, i.e. the formation of hydrates.
Resumo:
In South Gwynedd, Wales, U.K., the calcicole lichen Xanthoria parietina occurs not only on alkaline substrates at inland sites but also on siliceous rock at coastal martimie sites while the calcifuge species Parmelia saxatilis occurs only at inland sites and on slate rocks. Samples of maritime and inland slate did not differ significantly in their calcium or magnesium content. Thalli of X. parietina on pieces of slate did not survive when transplanted from maritime rocks to a site inland. Thalli of maritime X. parietina and P. saxatilis on slate were then transplanted to a site inland and were treated at intervals during 1 year either with calcium carbonate applied as a thick paste or a 0.25 mM solution of calcium chloride. Treatment of X. parietina with calcium carbonate enabled the thalli to survive and grow. However, addition of calcium carbonate to P. saxatilis resulted in low growth rates and fragmentation of the centres of the thalli. The calcium chloride solution had no statistically significant effects on the growth of either species. In addition, thalli of both species were treated with calcium or magnesium carbonates or wetted with an alkaline buffer at intervals over 12-14 months. Thalli of X. parietina survived and grew rapidly when treated with either carbonate but the growth of the buffer-treated thalli gradually declined over the experimental period. Thalli of P. saxatilis fragmented and disappeared after 8-10 months after treatment with either carbonate but normal growth occurred in the buffer treatment. Xanthoria parietina may occur on siliceous maritime rocks at the site because of the presence of calcium or magnesium in sea spray combined with the spray’s alkaline pH. By contrast, P. saxatilis may be confined to siliceous rocks inland because the thalli grow poorly in the presence of calcium and magnesium.
Resumo:
A study was made to determine the conditions under which the optimum droplet size distribution (ie., narrowest size range with a minimum of fines and over-sized agglomerates), is generated in sprays from centrifugal pressure nozzles. A range of non-Newtonian detergent slurries were tested but the results are of wider application and parallel work was undertaken with water, ionic solutions and chalk slurries. Six centrifugal pressure nozzles were used and the drop-size distributions correlated as a function of fluid properties, pressure, fiowrate, feed temperature, and nozzle characteristics. Measurements were made using a Malvern Particle Size Anayser slung across a specially-designed transparent tower section of approximately 1.2m diameter in order to reduce obscuration caused by the spray and improve existing droplet sizing techniques. The results obtained were based upon the Rosin-Rammler distribution model and the Size Analyser provided a direct print-out of size distribution and the parameters characterising it. A Spraying System nozzle, AAASSTC8-8, produced the optimum spray distribution with the detergent slurry at a temperature of 60°C whilst operating at 1200 psi. With other fluids the Delevan 2.2SJ nozzle produced the optimum spray distribution operating at 1200 psi but with the Spraying Systems nozzles there was no clear-cut optimum set of conditions, ie. the nozzle and pressure varied depending upon the fluid being sprayed. The mechanisms of liquid sheet break-up and droplet dispersion were investigated in specially-constructed, scaled-up, transparent nozzles. A mathematical model of centrifugal pressure nozzle atomisation was developed based upon fundamental operating parameters rather than resorting to empirical correlations. This enabled theoretical predictions to be made over a wide range of operating conditions and nozzle types. The model predictions for volumetric fiowrate, liquid sheet length and air core diameter showed good agreement with the experimentally determined results. However, the model predicted smaller droplet sizes than were produced experimentally due to inaccuracies identified in the initial assumptions.
Resumo:
The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in a practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. Nu = 2.0 + 0.27 (l/B)°-18Re°-5Pr°-83 Sh = 2.0 + 0.575 ((T0-T.)/Tomfc) -o.o4Reo.5 ^0.33 Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, gelatin, skim milk and fructose at air temperatures ranging from 19°C to 198°C. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures > 150°C. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature > 60° C a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet surface at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of paniculate drying processes, particularly when skin-formation occurs and may be a crucial factor in volatiles retention.
Resumo:
The literature relating to evaporation from single droplets of pure liquids and the drying of solution and slurry droplets, and of droplet sprays has been reviewed. The heat and mass transfer rates for individual droplets suspended in free-flight, were investigated using a specially-designed vertical wind tunnel, to simulate conditions in a spray drier. The technique represented a unique alternative method for investigating evaporation from unrestrained single droplets with variable residence times. The experiments covered droplets of pure liquid allowbreak (water, isopropanol) allowbreak and of significantly different solutions (sucrose, potassium sulphate) over a range of temperatures of 37oC to 97oC, initial concentrations of 5 to 40wt/wt% , and initial drop sizes of 2.8 to 4.6mm. Drop behaviour was recorded photographically and dried particles were examined by Scanning Electron Microscopy. Correlations were developed for mass transfer coefficients for pure water droplets in free-flight; (i) experiencing oscillations, rotation and deformation, Sh = -105 + 3.9 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. > 1380 (ii) when these movements had ceased or diminished, Sh = 2.0 + 0.71 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. < 1060. Data for isopropanol drops were correlated resonably well by these equations. The heat transfer data showed a similar transition range. The drying rate curves for drops of sucrose and potassium sulphate solution exhibited three distinct stages; an initial increase in the drying rate as drop temperature reduced to the wet-bulb temperature, a short constant-rate period and a falling-rate period characterised by formation of a crust which controlled the mass transfer rate. Due to drop perturbation the rates in the high Re number region were up to 5 times greater than predicted from theory for spherical droplets. In the case of sucrose solution a `skin' formed over the drop surface prior to crust formation. This provided an additional resistance to mass transfer and resulted in extended drying times and a smooth crust of low porosity. The relevance of the results to practical spray drying operations is discussed.
Resumo:
Purpose - To investigate the ability of pharmacy staff in the United Kingdom (UK) to diagnose and treat dry eye. Methods - A mystery shopper technique to simulate a patient with presumed dry eye was used in 50 pharmacy practices in major towns and cities across the UK. Pharmacies were unaware of their involvement in the study. With the exception of a predetermined opening statement to initiate the consultation, no further information was volunteered. Questions asked, diagnoses given, management strategy advised and staff type was recorded immediately after the consultation. Results - The mean number of questions was 4.5 (SD 1.7; range 1–10). The most common question was the duration of symptoms (56%) and the least common was whether the patient had a history of headaches (2%). All pharmacy staff gave a diagnosis, but the majority were incorrect (58%), with only 42% correctly identifying dry eye. Treatment was advised by 92% of pharmacy staff, with the remaining 8% advising referral directly to the patient's GP or optometrist. Dry eye treatments involved topical ocular lubrication via eye drops (90%) and lipid based sprays (10%). However, only 10% gave administration advice, 10% gave dosage advice, 9% asked about contact lens wear, and none offered follow up although 15% also advised GP or optometrist referral. Conclusions - There is a need for improved ophthalmological training amongst pharmacists and pharmacy staff and establishment of cross referral relationships between pharmacies and optometry practices.