31 resultados para spray nozzles
em Aston University Research Archive
Resumo:
The literature pertaining to the key stages of spray drying has been reviewed in the context of the mathematical modelling of drier performance. A critical review is also presented of previous spray drying models. A new mathematical model has been developed for prediction of spray drier performance. This is applicable to slurries of rigid, porous crust-forming materials to predict trajectories and drying profiles for droplets with a distribution of sizes sprayed from a centrifugal pressure nozzle. The model has been validated by comparing model predictions to experimental data from a pilot-scale counter-current drier and from a full-scale co-current drier. For the latter, the computed product moisture content was within 2%, and the computed air exit temperature within 10oC of experimental data. Air flow patterns have been investigated in a 1.2m diameter transparent countercurrent spray tower by flow visualisation. Smoke was introduced into various zones within the tower to trace the direction, and gauge the intensity, of the air flow. By means of a set of variable-angle air inlet nozzles, a variety of air entry configurations was investigated. The existence of a core of high rotational and axial velocity channelling up the axis of the tower was confirmed. The stability of flow within the core was found to be strongly dependent upon the air entry arrangement. A probe was developed for the measurement of air temperature and humidity profiles. This was employed for studying evaporation of pure water drops in a 1.2m diameter pilot-scale counter-current drier. A rapid approach to the exit air properties was detected within a 1m distance from the air entry ports. Measured radial profiles were found to be virtually flat but, from the axial profiles, the existence of plug-flow, well-mixed-flow and some degree of air short-circuiting can be inferred. The model and conclusions should assist in the improved design and optimum operation of industrial spray driers.
Resumo:
An extensive review of literature has been carried out concerning the drying of single drops, sprays of droplets and the prediction of spray drier performances. The experimental investigation has been divided into two broad parts mainly: (1) Single Drop Experiments, and (2) Spray Drying and Residence Time Distribution Experiments. The thermal conductivity of slurry cakes from five different sources have been experimentally determined using a modified Lee's Disc Apparatus and the data collected was correlated by the polynominal... Good agreement was observed between the experimental thermal conductivity values and the predicted ones. The fit gave a variance ... for the various samples experimented on. A mathematical model for estimating crust mass transfer coefficient at high drying temperatures was derived.
Resumo:
The present study investigates the feasibility of using two types of carbomer (971 and 974) to prepare inhalable dry powders that exhibit modified drug release properties. Powders were prepared by spray-drying formulations containing salbutamol sulphate, 20-50% w/w carbomer as a drug release modifier and leucine as an aerosolization enhancer. Following physical characterization of the powders, the aerosolization and dissolution properties of the powders were investigated using a Multi-Stage Liquid Impinger and a modified USP II dissolution apparatus, respectively. All carbomer 974-modified powders and the 20% carbomer 971 powder demonstrated high dispersibility, with emitted doses of at least 80% and fine particle fractions of approximately 40%. The release data indicated that all carbomer-modified powders displayed a sustained release profile, with carbomer 971-modified powders obeying first order kinetics, whereas carbomer 974-modified powders obeyed the Higuchi root time kinetic model; increasing the amount of carbomer 971 in the formulation did not extend the duration of drug release, whereas this was observed for the carbomer 974-modified powders. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance.
Resumo:
The controlled co-delivery of multiple agents to the lung offers potential benefits to patients. This study investigated the preparation and characterisation of highly respirable spray-dried powders displaying the sustained release of two chemically distinct therapeutic agents. Spray-dried powders were produced from 30% (v/v) aqueous ethanol formulations that contained hydrophilic (terbutaline sulphate) and hydrophobic (beclometasone dipropionate) model drugs, chitosan (as a drug release modifier) and leucine (aerosolisation enhancer). The influence of chitosan molecular weight on spray-drying thermal efficiency, aerosol performance and drug release profile was investigated. Resultant powders were physically characterised: with in vitro aerosolisation performance and drug release profile investigated by the Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. It was found that increased chitosan molecular weight gave increased spray-drying thermal efficiency. The powders generated were of a suitable size for inhalation—with emitted doses over 90% and fine particle fractions up to 72% of the loaded dose. Sustained drug release profiles were observed in dissolution tests for both agents: increased chitosan molecular weight associated with increased duration of drug release. The controlled co-delivery of hydrophilic and hydrophobic entities underlines the capability of spray drying to produce respirable particles with sustained release for delivery to the lung. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dry powders for inhalation were prepared by spray drying a 30% v/v aqueous ethanol formulation containing beclometasone dipropionate (BDP), lactose, leucine and chitosan (low, medium or high molecular weight (MW), or combinations thereof). Following physical characterisation of the powders, the aerosolisation and dissolution properties of the powders were investigated using Multi-Stage Liquid Impinger and USP II dissolution apparatus, respectively. The powders were highly dispersible, with emitted doses in excess of 90% of loaded powder aerosolised from a Spinhaler dry powder inhaler. The fine particle fraction (FPF) was observed to decrease, whereas the time for 100% drug release increased, with increasing chitosan MW. For example, the low MW formulation exhibited an FPF of 64% and a 100% dissolution time of 2 h, whereas the high MW formulation demonstrated an FPF of 54% and a dissolution time of 12 h. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation, and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, we describe the preparation of highly dispersible dry powders for pulmonary drug delivery that display sustained drug release characteristics. Powders were prepared by spray-drying 30% v/v aqueous ethanol formulations containing terbutaline sulfate as a model drug, chitosan as a drug release modifier and leucine as an aerosolisation enhancer. The influence of chitosan molecular weight on the drug release profile was investigated by using low, medium and high molecular weight chitosan or combinations thereof. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction, tapped density analysis, differential scanning calorimetry and thermogravitational analysis. The in vitro aerosolisation performance and drug release profile were investigated using Multi-Stage Liquid Impinger analysis and modified USP II dissolution apparatus, respectively. The powders generated were of a suitable aerodynamic size for inhalation, had low moisture content and were amorphous in nature. The powders were highly dispersible, with emitted doses of over 90% and fine particle fractions of up to 82% of the total loaded dose, and mass median aerodynamic diameters of less than 2.5microm. A sustained drug release profile was observed during dissolution testing; increasing the molecular weight of the chitosan in the formulation increased the duration of drug release. (c)2007 Elsevier B.V. All rights reserved.
Resumo:
Powders for inhalation are traditionally prepared using a destructive micronization process such as jet milling to reduce the particle size of the drug to 2-5 μm. The resultant particles are typically highly cohesive and display poor aerosolization properties, necessitating the addition of a coarse carrier particle to the micronized drug to improve powder flowability. Spray-drying technology offers an alternative, constructive particle production technique to the traditional destructive approach, which may be particularly useful when processing biotechnology products that could be adversely affected by high-energy micronization processes. Advantages of spray drying include the ability to incorporate a wide range of excipients into the spray-drying feedstock, which could modify the aerosolization and stability characterizations of the resultant powders, as well as modify the drug release and absorption profiles following inhalation. This review discusses some of the reasons why pulmonary drug delivery is becoming an increasingly popular route of administration and describes the various investigations that have been undertaken in the preparation of spray-dried powders for pulmonary drug delivery. © 2007 by Begell House, Inc.
Resumo:
In this study, the amino acids arginine, aspartic acid, leucine, phenylalanine and threonine were investigated as 'dispersibility enhancers' in spray-dried powders for inhalation. Parameters such as spray-dried yield, tapped density, and Carr's Index were not predictive of aerosolisation performance. In addition, whilst the majority of amino acid-modified powders displayed suitable particle size distribution for pulmonary administration and potentially favourable low moisture content, in vitro particle deposition was only enhanced for the leucine-modified powder. In summary, leucine can be used to enhance the dispersibility and aerosolisation properties of spray-dried powders for pulmonary drug delivery. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Dry powders suitable for inhalation containing β-estradiol, leucine as a dispersibility enhancer and lactose as a bulking agent were prepared by spray-drying from aqueous ethanol formulations. The influence of formulation components on the characteristics of the resultant spray-dried powders was examined through the use of a range of ethanol concentrations (10-50% v/v) in the solvent used to prepare the initial formulations. Additionally, the amount of leucine required to act as a dispersibility enhancer was investigated by varying the amount of leucine added to the formulation prior to spray-drying. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction and tapped density measurements, and the aerosolisation performance determined using Twin Stage Impinger and Andersen Cascade Impactor analysis. We demonstrate that selection of appropriate solvent systems and leucine concentration allows the preparation of spray-dried powders that display enhanced aerosolisation properties, and would be predicted to exhibit high deposition in the lower regions of the respiratory tract. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.
Resumo:
Background Pulmonary delivery of gene therapy offers the potential for the treatment of a range of lung conditions, including cystic fibrosis, asthma and lung cancer. Spray-drying may be used to prepare dry powders for inhalation; however, aerosolisation of such powders is limited, resulting in poor lung deposition and biological functionality. In this study, we examine the use of amino acids (arginine, aspartic acid, threonine, phenylalanine) to enhance the aerosolisation of spray-dried powders containing model non-viral gene vectors. Methods Lipid/polycation/pDNA (LPD) vectors, in the presence or absence of amino acids, were dispersed in lactose solutions, and spray-dried to produce appropriately sized dry powders. Scanning electron microscopy and laser diffraction were used to determine particle morphology and diameter, respectively. Gel electrophoresis was used to examine the influence of amino acids on the structural integrity of the LPD complex. In vitro cell (A.549) transfection was used to determine the biological functionality of the dry powders, and the in vitro aerosolisation performance was assessed using a multistage liquid impinger (MSLI). Results Both gel electrophoresis and in vitro cell transfection indicated that certain amino acids (aspartic acid, threonine) can adversely affect the integrity and biological functionality of the LPD complex. All amino acids significantly increased the aerosolisation of the powder, with the arginine and phenylalanine powders showing optimal deposition in the lower stages of the MSLI. Conclusions Amino acids can be used to enhance the aerosolisation of spray-dried powders for respiratory gene delivery, allowing the development of stable and viable formulations for pulmonary gene therapy.
Resumo:
Purpose: With the potential to address evaporative dry eye, a novel spray has been developed in which phospholipid liposomes are delivered to the tear film via the surface of the closed eyelid. This study evaluated the short-term effects of liposomal spray application on the lipid and stability characteristics of the pre-ocular tear film in normal eyes. Methods: Twenty-two subjects (12M, 10F) aged 35.1 ± 7.1 years participated in this prospective, randomised, double-masked investigation in which the liposomal spray was applied to one eye, and an equal volume of saline spray (control) applied to the contralateral eye. Lipid layer grade (LLG), non-invasive tear film stability (NIBUT) and tear meniscus height (TMH) were evaluated at baseline, and at 30, 60, 90 and 135 minutes post-application. Subjective reports of comfort were also compared. Results: Treated and control eyes were not significantly different at baseline (p>0.05). Post-application, LLG increased significantly, at 30 and 60 minutes, only in the treated eyes (p=0.005). NIBUT also increased significantly in the treated eyes only (p<0.001), at 30, 60 and 90 minutes. TMH did not alter significantly (p>0.05). Comfort improved relative to baseline in 46% of treated and 18% of control eyes, respectively, at 30 minutes post-application. Of those expressing a preference in comfort between the eyes, 68% preferred the liposomal spray. Conclusions: Consistent with subjective reports of improved comfort, statistically and clinically significant improvements in lipid layer thickness and tear film stability are observed in normal eyes for at least an hour after a single application of a phospholipid liposomal spray.
Resumo:
A study was made to determine the conditions under which the optimum droplet size distribution (ie., narrowest size range with a minimum of fines and over-sized agglomerates), is generated in sprays from centrifugal pressure nozzles. A range of non-Newtonian detergent slurries were tested but the results are of wider application and parallel work was undertaken with water, ionic solutions and chalk slurries. Six centrifugal pressure nozzles were used and the drop-size distributions correlated as a function of fluid properties, pressure, fiowrate, feed temperature, and nozzle characteristics. Measurements were made using a Malvern Particle Size Anayser slung across a specially-designed transparent tower section of approximately 1.2m diameter in order to reduce obscuration caused by the spray and improve existing droplet sizing techniques. The results obtained were based upon the Rosin-Rammler distribution model and the Size Analyser provided a direct print-out of size distribution and the parameters characterising it. A Spraying System nozzle, AAASSTC8-8, produced the optimum spray distribution with the detergent slurry at a temperature of 60°C whilst operating at 1200 psi. With other fluids the Delevan 2.2SJ nozzle produced the optimum spray distribution operating at 1200 psi but with the Spraying Systems nozzles there was no clear-cut optimum set of conditions, ie. the nozzle and pressure varied depending upon the fluid being sprayed. The mechanisms of liquid sheet break-up and droplet dispersion were investigated in specially-constructed, scaled-up, transparent nozzles. A mathematical model of centrifugal pressure nozzle atomisation was developed based upon fundamental operating parameters rather than resorting to empirical correlations. This enabled theoretical predictions to be made over a wide range of operating conditions and nozzle types. The model predictions for volumetric fiowrate, liquid sheet length and air core diameter showed good agreement with the experimentally determined results. However, the model predicted smaller droplet sizes than were produced experimentally due to inaccuracies identified in the initial assumptions.