9 resultados para spin-coating film

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a pioneering study are presented in which for the first time, crystallization, phase separation and Marangoni instabilities occurring during the spin-coating of polymer blends are directly visualized, in real-space and real-time. The results provide exciting new insights into the process of self-assembly, taking place during spin-coating, paving the way for the rational design of processing conditions, to allow desired morphologies to be obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of the direct observation, in real-space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho-xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o-xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin-coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length-scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length-scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform thin-films of polymer blends can be produced through spin-coating, which is used on an industrial scale for the production of light emitting diodes, and more recently organic photovoltaic devices. Here, we present the results of the direct observation, and control, over the phase separation of polystyrene and poly(9,9′-dioctylfluorene) during spin-coating using high speed stroboscopic fluorescence microscopy. This new approach, imaging the fluorescence, from a blend of fluorescent + non-fluorescent polymers allows for intensity to be directly mapped to composition, providing a direct determination of composition fluctuations during the spin-coating process. We have studied the compositional development and corresponding structural development for a range of compositions, which produce a range of different phase separated morphologies. We initially observe domains formed by spinodal decomposition, coarsening via Ostwald Ripening until an interfacial instability causes break-up of the bicontinuous morphology. Ostwald ripening continues, and depending upon composition a bicontinuous morphology is re-established. By observing compositional and morphological development in real-time, we are able to direct and control morphological structure development through control of the spin coating parameters via in situ feedback. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-based latices, used in the production of internal liners for beer/beverage cans, were investigated using a number of analytical techniques. The epoxy-graft-acrylic polymers, used to prepare the latices, and films, produced from those latices, were also examined. It was confirmed that acrylic polymer preferentially grafts onto higher molecular weight portions of the epoxy polymer. The amount of epoxy remaining ungrafted was determined to be 80%. This figure is higher than was previously thought. Molecular weight distribution studies were carried out on the epoxy and epoxy-g-acrylic resins. A quantitative method for determining copolymer composition using GPC was evaluated. The GPC method was also used to determine polymer composition as a function of molecular weight. IR spectroscopy was used to determine the total level of acrylic modification of the polymers and NMR was used to determine the level of grafting. Particle size determinations were carried out using transmission electron microscopy and dynamic light scattering. Levels of stabilising amine greatly affected the viscosity of the latex, particle size and amount of soluble polymer but the core particle size, as determined using TEM, was unaffected. NMR spectra of the latices produced spectra only from solvents and amine modifiers. Using solid-state CP/MAS/freezing techniques spectra from the epoxy component could be observed. FT-IR spectra of the latices were obtained after special subtraction of water. The only difference between the spectra of the latices and those of the dry film were due to the presence of the solvents in the former. A distinctive morphology in the films produced from the latices was observed. This suggested that the micelle structure of the latex survives the film forming process. If insufficient acrylic is present, large epoxy domains are produced which gives rise to poor film characteristics. Casting the polymers from organic solutions failed to produce similar morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of drugs in the solid state has been studied using aspirin and salsalate as models. The feasibility of using suspension systems for predicting the stability of these drugs in the solid state has been investigated.. It has been found that such systems are inappropriate in defining the effect of excipients on 'the decomposition of the active drug due to chqnges in the degradation pathway. Using a high performance liquid chromatographic method, magnesium stearate was shown to induce the formation of potentlally immunogenic products in aspirin powders. These products which included salicylsalicylic acid .and acetylsalicyclsalicylic acid were not detected in aspirin suspensions which had undergone the same extent of decomposition. By studying the effect of pH and of added excipients on the rate of decomposition of aspirin in suspension systems, it has been shown that excipients such as magnesium stearate containing magnesium oxide, most probably enhance the decomposition of both aspirin and salsalate by alkalinising the aqueous phase. In the solid state, pH effects produced by excipients appear to be relatively unimportant. Evidence is presented to suggest that the critical parameter is a depression in melting point induced by: the added excipient. Microscopical examination in fact showed the formation of clear liquid layers in aspirin samples containing added magnesium stearate but not in control samples. Kinetic equations which take into account both the diffusive barrier presented by the liquid films and the. geometry of the aspirin crystals were developed. Fitting of the .experimental data to these equations showed good agreement. with the postulated theory. Monitorjng of weight issues during the decomposition of aspirin revealed that in the solid systems studied where the bulk of the decomposition product sublimes, it is possible to estimate the extent of degradation from the residual weight, provided the initial weight is known. The corollary is that in such open systems, monitoring of decomposition products is inadequate for assessing the extent of decomposition. In addition to the magnesium stearate-aspirin system, mapyramine maleate-aspirin mixtures were used to model interactive systems. Work carried out in an attempt to stabilise such systems included microencapsulation and film coating. The protection obtained was dependent on the interactive species used. Gelatin for example appeared to stabilise aspirin against the adverse effects of magnesium stearate but increased its decomposition in the presence of mapyramine maleate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a bi-metal coating (platinum and gold or silver) localised surface plasmon resonance fibre device that produces an index spectral sensitivity of over 11,000 nm/RIU, yielding an index resolution of 5×10-6in the aqueous index regime, consisting of a structured multi-layered thin film on D-shaped fibre. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats.