9 resultados para sperm birefringence
em Aston University Research Archive
Resumo:
The use of high birefringence fibre forming a differential path interferometer as an interrogation unit for heterodyne fibre optic sensing applications is described.
Resumo:
The use of high birefringence fiber interrogating interferometer for optical sensing applications was discussed. The method is of low cost and permits simple adjustment of the optical path difference and has much lower sensitivity to environmental perturbation. The polarization-maintaining (PM) fiber interferometer adopted a heterodyne approach using interferometric wavelength shift detection. The study showed that the inclusion of power amplifier driving a multi-element piezoelectric stack will enable the bandwidth to be pushed up into the kHz regime.
Resumo:
We have proposed and demonstrated a multiwavelength fiber laser based on nonlinear polarization rotation (NPR). The mechanism for stable room-temperature multiwavelength operation contributes to the ability of the intensity-dependent loss in NPR to effectively alleviate mode competition. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range of the in-line periodic filter.
Resumo:
We have proposed and demonstrated a multiwavelength fiber laser based on nonlinear polarization rotation (NPR). The mechanism for stable room-temperature multiwavelength operation contributes to the ability of the intensity-dependent loss in NPR to effectively alleviate mode competition. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range of the in-line periodic filter.
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.
Resumo:
We describe the use of high birefringence fibre forming a differential path interferometer for heterodyne fibre optic sensing applications. We firstly recover a low frequency strain amplitude of 1µe at 1Hz applied to a fibre Bragg grating sensor demonstrating a noise limited resolution of around 100ne/vHz. Secondly we interrogate a Mach-Zehnder interferometer sensor using the dual wavelength technique to detect a change in the Mach-Zehnder OPD of 200µm.
Resumo:
We present experimental measurements of the peak splitting of the reflection spectra of fiber Bragg gratings as a result of birefringence induced by transverse loading of a multicore fiber. Measurements show that the splitting is a function of the applied load and the direction of the load relative to the azimuth of the fiber. A model for calculating the stress in the fiber that is due to an applied load is in good agreement with our experimental observations.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.