40 resultados para spatiotemporal epidemic prediction model

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of a simple and accurate method for estimating the quantity and composition of household waste arisings. The method is based on the fundamental tenet that waste arisings can be predicted from information on the demographic and socio-economic characteristics of households, thus reducing the need for the direct measurement of waste arisings to that necessary for the calibration of a prediction model. The aim of the research is twofold: firstly to investigate the generation of waste arisings at the household level, and secondly to devise a method for supplying information on waste arisings to meet the needs of waste collection and disposal authorities, policy makers at both national and European level and the manufacturers of plant and equipment for waste sorting and treatment. The research was carried out in three phases: theoretical, empirical and analytical. In the theoretical phase specific testable hypotheses were formulated concerning the process of waste generation at the household level. The empirical phase of the research involved an initial questionnaire survey of 1277 households to obtain data on their socio-economic characteristics, and the subsequent sorting of waste arisings from each of the households surveyed. The analytical phase was divided between (a) the testing of the research hypotheses by matching each household's waste against its demographic/socioeconomic characteristics (b) the development of statistical models capable of predicting the waste arisings from an individual household and (c) the development of a practical method for obtaining area-based estimates of waste arisings using readily available data from the national census. The latter method was found to represent a substantial improvement over conventional methods of waste estimation in terms of both accuracy and spatial flexibility. The research therefore represents a substantial contribution both to scientific knowledge of the process of household waste generation, and to the practical management of waste arisings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retrospective clinical data presents many challenges for data mining and machine learning. The transcription of patient records from paper charts and subsequent manipulation of data often results in high volumes of noise as well as a loss of other important information. In addition, such datasets often fail to represent expert medical knowledge and reasoning in any explicit manner. In this research we describe applying data mining methods to retrospective clinical data to build a prediction model for asthma exacerbation severity for pediatric patients in the emergency department. Difficulties in building such a model forced us to investigate alternative strategies for analyzing and processing retrospective data. This paper describes this process together with an approach to mining retrospective clinical data by incorporating formalized external expert knowledge (secondary knowledge sources) into the classification task. This knowledge is used to partition the data into a number of coherent sets, where each set is explicitly described in terms of the secondary knowledge source. Instances from each set are then classified in a manner appropriate for the characteristics of the particular set. We present our methodology and outline a set of experiential results that demonstrate some advantages and some limitations of our approach. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates the contribution that Geographic Information Systems (GIS) can make to the land suitability process used to determine the effects of a climate change scenario. The research is intended to redress the severe under representation of Developing countries within the literature examining the impacts of climatic change upon crop productivity. The methodology adopts some of the Intergovernmental Panel on Climate Change (IPCC) estimates for regional climate variations, based upon General Circulation Model predictions (GCMs) and applies them to a baseline climate for Bangladesh. Utilising the United Nations Food & Agricultural Organisation's Agro-ecological Zones land suitability methodology and crop yield model, the effects of the scenario upon agricultural productivity on 14 crops are determined. A Geographic Information System (IDRISI) is adopted in order to facilitate the methodology, in conjunction with a specially designed spreadsheet, used to determine the yield and suitability rating for each crop. A simple optimisation routine using the GIS is incorporated to provide an indication of the 'maximum theoretical' yield available to the country, should the most calorifically significant crops be cultivated on each land unit both before and after the climate change scenario. This routine will provide an estimate of the theoretical population supporting capacity of the country, both now and in the future, to assist with planning strategies and research. The research evaluates the utility of this alternative GIS based methodology for the land evaluation process and determines the relative changes in crop yields that may result from changes in temperature, photosynthesis and flooding hazard frequency. In summary, the combination of a GIS and a spreadsheet was successful, the yield prediction model indicates that the application of the climate change scenario will have a deleterious effect upon the yields of the study crops. Any yield reductions will have severe implications for agricultural practices. The optimisation routine suggests that the 'theoretical maximum' population supporting capacity is well in excess of current and future population figures. If this agricultural potential could be realised however, it may provide some amelioration from the effects of climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vitro studies of drug absorption processes are undertaken to assess drug candidate or formulation suitability, mechanism investigation, and ultimately for the development of predictive models. This study included each of these approaches, with the aim of developing novel in vitro methods for inclusion in a drug absorption model. Two model analgesic drugs, ibuprofen and paracetamol, were selected. The study focused on three main areas, the interaction of the model drugs with co-administered antacids, the elucidation of the mechanisms responsible for the increased absorption rate observed in a novel paracetamol formulation and the development of novel ibuprofen tablet formulations containing alkalising excipients as dissolution promoters.Several novel dissolution methods were developed. A method to study the interaction of drug/excipient mixtures in the powder form was successfully used to select suitable dissolution enhancing exicipents. A method to study intrinsic dissolution rate using paddle apparatus was developed and used to study dissolution mechanisms. Methods to simulate stomach and intestine environments in terms of media composition and volume and drug/antacid doses were developed. Antacid addition greatly increased the dissolution of ibuprofen in the stomach model.Novel methods to measure drug permeability through rat stomach and intestine were developed, using sac methodology. The methods allowed direct comparison of the apparent permeability values obtained. Tissue stability, reproducibility and integrity was observed, with selectivity between paracellular and transcellular markers and hydrophilic and lipophilic compounds within an homologous series of beta-blockers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development of a tree-based decision model to predict the severity of pediatric asthma exacerbations in the emergency department (ED) at 2 h following triage. The model was constructed from retrospective patient data abstracted from the ED charts. The original data was preprocessed to eliminate questionable patient records and to normalize values of age-dependent clinical attributes. The model uses attributes routinely collected in the ED and provides predictions even for incomplete observations. Its performance was verified on independent validating data (split-sample validation) where it demonstrated AUC (area under ROC curve) of 0.83, sensitivity of 84%, specificity of 71% and the Brier score of 0.18. The model is intended to supplement an asthma clinical practice guideline, however, it can be also used as a stand-alone decision tool.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The small intestine poses a major barrier to the efficient absorption of orally administered therapeutics. Intestinal epithelial cells are an extremely important site for extrahepatic clearance, primarily due to prominent P-glycoprotein-mediated active efflux and the presence of cytochrome P450s. We describe a physiologically based pharmacokinetic model which incorporates geometric variations, pH alterations and descriptions of the abundance and distribution of cytochrome 3A and P-glycoprotein along the length of the small intestine. Simulations using preclinical in vitro data for model drugs were performed to establish the influence of P-glycoprotein efflux, cytochrome 3A metabolism and passive permeability on drug available for absorption within the enterocytes. The fraction of drug escaping the enterocyte (F(G)) for 10 cytochrome 3A substrates with a range of intrinsic metabolic clearances were simulated. Following incorporation of P-glycoprotein in vitro efflux ratios all predicted F(G) values were within 20% of observed in vivo F(G). The presence of P-glycoprotein increased the level of cytochrome 3A drug metabolism by up to 12-fold in the distal intestine. F(G) was highly sensitive to changes in intrinsic metabolic clearance but less sensitive to changes in intestinal drug permeability. The model will be valuable for quantifying aspects of intestinal drug absorption and distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface quality is important in engineering and a vital aspect of it is surface roughness, since it plays an important role in wear resistance, ductility, tensile, and fatigue strength for machined parts. This paper reports on a research study on the development of a geometrical model for surface roughness prediction when face milling with square inserts. The model is based on a geometrical analysis of the recreation of the tool trail left on the machined surface. The model has been validated with experimental data obtained for high speed milling of aluminum alloy (Al 7075-T7351) when using a wide range of cutting speed, feed per tooth, axial depth of cut and different values of tool nose radius (0.8. mm and 2.5. mm), using the Taguchi method as the design of experiments. The experimental roughness was obtained by measuring the surface roughness of the milled surfaces with a non-contact profilometer. The developed model can be used for any combination of material workpiece and tool, when tool flank wear is not considered and is suitable for using any tool diameter with any number of teeth and tool nose radius. The results show that the developed model achieved an excellent performance with almost 98% accuracy in terms of predicting the surface roughness when compared to the experimental data. © 2014 The Society of Manufacturing Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the analysis and prediction of many real-world time series, the assumption of stationarity is not valid. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We introduce a new model which combines a dynamic switching (controlled by a hidden Markov model) and a non-linear dynamical system. We show how to train this hybrid model in a maximum likelihood approach and evaluate its performance on both synthetic and financial data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a new technique in the investigation of limited-dependent variable models. This paper illustrates that variable precision rough set theory (VPRS), allied with the use of a modern method of classification, or discretisation of data, can out-perform the more standard approaches that are employed in economics, such as a probit model. These approaches and certain inductive decision tree methods are compared (through a Monte Carlo simulation approach) in the analysis of the decisions reached by the UK Monopolies and Mergers Committee. We show that, particularly in small samples, the VPRS model can improve on more traditional models, both in-sample, and particularly in out-of-sample prediction. A similar improvement in out-of-sample prediction over the decision tree methods is also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N=137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-scale model of edge coding based on normalized Gaussian derivative filters successfully predicts perceived scale (blur) for a wide variety of edge profiles [Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (in press). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision]. Our model spatially differentiates the luminance profile, half-wave rectifies the 1st derivative, and then differentiates twice more, to give the 3rd derivative of all regions with a positive gradient. This process is implemented by a set of Gaussian derivative filters with a range of scales. Peaks in the inverted normalized 3rd derivative across space and scale indicate the positions and scales of the edges. The edge contrast can be estimated from the height of the peak. The model provides a veridical estimate of the scale and contrast of edges that have a Gaussian integral profile. Therefore, since scale and contrast are independent stimulus parameters, the model predicts that the perceived value of either of these parameters should be unaffected by changes in the other. This prediction was found to be incorrect: reducing the contrast of an edge made it look sharper, and increasing its scale led to a decrease in the perceived contrast. Our model can account for these effects when the simple half-wave rectifier after the 1st derivative is replaced by a smoothed threshold function described by two parameters. For each subject, one pair of parameters provided a satisfactory fit to the data from all the experiments presented here and in the accompanying paper [May, K. A. & Georgeson, M. A. (2007). Added luminance ramp alters perceived edge blur and contrast: A critical test for derivative-based models of edge coding. Vision Research, 47, 1721-1731]. Thus, when we allow for the visual system's insensitivity to very shallow luminance gradients, our multi-scale model can be extended to edge coding over a wide range of contrasts and blurs. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blurred edges appear sharper in motion than when they are stationary. We have previously shown how such distortions in perceived edge blur may be explained by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. To test this model further, we measured the sharpening of drifting, periodic patterns over a large range of contrasts, blur widths, and speeds Human Vision. The results indicate that, while sharpening increased with speed, it was practically invariant with contrast. This contrast invariance cannot be explained by a fixed compressive nonlinearity since that predicts almost no sharpening at low contrasts.We show by computational modelling of spatiotemporal responses that, if a dynamic contrast gain control precedes the static nonlinear transducer, then motion sharpening, its speed dependence, and its invariance with contrast can be predicted with reasonable accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid method for the analysis of biomass feedstocks was established to identify the quality of the pyrolysis products likely to impact on bio-oil production. A total of 15 Lolium and Festuca grasses known to exhibit a range of Klason lignin contents were analysed by pyroprobe-GC/MS (Py-GC/MS) to determine the composition of the thermal degradation products of lignin. The identification of key marker compounds which are the derivatives of the three major lignin subunits (G, H, and S) allowed pyroprobe-GC/MS to be statistically correlated to the Klason lignin content of the biomass using the partial least-square method to produce a calibration model. Data from this multivariate modelling procedure was then applied to identify likely "key marker" ions representative of the lignin subunits from the mass spectral data. The combined total abundance of the identified key markers for the lignin subunits exhibited a linear relationship with the Klason lignin content. In addition the effect of alkali metal concentration on optimum pyrolysis characteristics was also examined. Washing of the grass samples removed approximately 70% of the metals and changed the characteristics of the thermal degradation process and products. Overall the data indicate that both the organic and inorganic specification of the biofuel impacts on the pyrolysis process and that pyroprobe-GC/MS is a suitable analytical technique to asses lignin composition. © 2007 Elsevier B.V. All rights reserved.