10 resultados para spatially varying object pixel density
em Aston University Research Archive
Resumo:
Correlations between the clustering patterns of the vacuolation ('spongiform change'), prion protein (PrP) deposits, and surviving neurons were studied in the cerebral cortex, hippocampus, and cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (sCJD). Differences in the sizes of the clusters of vacuoles were observed between brain regions and in the cerebral cortex, between the upper and lower laminae. With the exception of the parietal cortex, mean cluster size of the vacuoles was similar to that of the PrP deposits in each brain area. Clusters of the vacuoles were spatially correlated with the density of surviving neurons and with the clusters of PrP deposits in 47% and 53% of cortical areas analysed respectively but there were few spatial correlation between the PrP deposits and the density of surviving neurons. The data suggest that the pathology of sCJD may spread through the brain via specific anatomical pathways. Development of the clusters of vacuoles is spatially related to surviving neurons while the appearance of clusters of PrP deposits is related to the development of the vacuolation.
Resumo:
In recent years there has been a great effort to combine the technologies and techniques of GIS and process models. This project examines the issues of linking a standard current generation 2½d GIS with several existing model codes. The focus for the project has been the Shropshire Groundwater Scheme, which is being developed to augment flow in the River Severn during drought periods by pumping water from the Shropshire Aquifer. Previous authors have demonstrated that under certain circumstances pumping could reduce the soil moisture available for crops. This project follows earlier work at Aston in which the effects of drawdown were delineated and quantified through the development of a software package that implemented a technique which brought together the significant spatially varying parameters. This technique is repeated here, but using a standard GIS called GRASS. The GIS proved adequate for the task and the added functionality provided by the general purpose GIS - the data capture, manipulation and visualisation facilities - were of great benefit. The bulk of the project is concerned with examining the issues of the linkage of GIS and environmental process models. To this end a groundwater model (Modflow) and a soil moisture model (SWMS2D) were linked to the GIS and a crop model was implemented within the GIS. A loose-linked approach was adopted and secondary and surrogate data were used wherever possible. The implications of which relate to; justification of a loose-linked versus a closely integrated approach; how, technically, to achieve the linkage; how to reconcile the different data models used by the GIS and the process models; control of the movement of data between models of environmental subsystems, to model the total system; the advantages and disadvantages of using a current generation GIS as a medium for linking environmental process models; generation of input data, including the use of geostatistic, stochastic simulation, remote sensing, regression equations and mapped data; issues of accuracy, uncertainty and simply providing adequate data for the complex models; how such a modelling system fits into an organisational framework.
Resumo:
We present a probabilistic, online, depth map fusion framework, whose generative model for the sensor measurement process accurately incorporates both long-range visibility constraints and a spatially varying, probabilistic outlier model. In addition, we propose an inference algorithm that updates the state variables of this model in linear time each frame. Our detailed evaluation compares our approach against several others, demonstrating and explaining the improvements that this model offers, as well as highlighting a problem with all current methods: systemic bias. © 2012 Springer-Verlag.
Resumo:
In this report we discuss the problem of combining spatially-distributed predictions from neural networks. An example of this problem is the prediction of a wind vector-field from remote-sensing data by combining bottom-up predictions (wind vector predictions on a pixel-by-pixel basis) with prior knowledge about wind-field configurations. This task can be achieved using the scaled-likelihood method, which has been used by Morgan and Bourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling
Resumo:
This study tested the hypothesis that variations in the density of the florid prion protein (PrP) plaques in the brain of patients with variant Creutzfeldt-Jakob disease (vCJD) were spatially related to blood vessels. In 81% of areas of the cerebral cortex sampled and in 37% of the remaining areas, which included the hippocampus, dentate gyrus, and cerebellum, there was a positive spatial correlation between the density of the florid plaques and the larger blood vessel profiles. The frequency of the positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower cortical laminae. The data support the hypothesis that the florid plaques cluster around the larger blood vessels in vCJD, the density of associated plaques increasing with vessel size. The development of florid plaques close to blood vessels may be due to factors associated with the blood vessels that enhance the aggregation of PrP to form the dense cores of florid plaques and is unlikely to reflect the haematogenous spread of PrP into the brain.
Resumo:
This thesis consisted of two major parts, one determining the masking characteristics of pixel noise and the other investigating the properties of the detection filter employed by the visual system. The theoretical cut-off frequency of white pixel noise can be defined from the size of the noise pixel. The empirical cut-off frequency, i.e. the largest size of noise pixels that mimics the effect of white noise in detection, was determined by measuring contrast energy thresholds for grating stimuli in the presence of spatial noise consisting of noise pixels of various sizes and shapes. The critical i.e. minimum number of noise pixels per grating cycle needed to mimic the effect of white noise in detection was found to decrease with the bandwidth of the stimulus. The shape of the noise pixels did not have any effect on the whiteness of pixel noise as long as there was at least the minimum number of noise pixels in all spatial dimensions. Furthermore, the masking power of white pixel noise is best described when the spectral density is calculated by taking into account all the dimensions of noise pixels, i.e. width, height, and duration, even when there is random luminance only in one of these dimensions. The properties of the detection mechanism employed by the visual system were studied by measuring contrast energy thresholds for complex spatial patterns as a function of area in the presence of white pixel noise. Human detection efficiency was obtained by comparing human performance with an ideal detector. The stimuli consisted of band-pass filtered symbols, uniform and patched gratings, and point stimuli with randomised phase spectra. In agreement with the existing literature, the detection performance was found to decline with the increasing amount of detail and contour in the stimulus. A measure of image complexity was developed and successfully applied to the data. The accuracy of the detection mechanism seems to depend on the spatial structure of the stimulus and the spatial spread of contrast energy.
Resumo:
After exogenously cueing attention to a peripheral location, the return of attention and response to the location can be inhibited. We demonstrate that these inhibitory mechanisms of attention can be associated with objects and can be automatically and implicitly retrieved over relatively long periods. Furthermore, we also show that when face stimuli are associated with inhibition, the effect is more robust for faces presented in the left visual field. This effect can be even more spatially specific, where most robust inhibition is obtained for faces presented in the upper as compared to the lower visual field. Finally, it is revealed that the inhibition is associated with an object’s identity, as inhibition moves with an object to a new location; and that the retrieved inhibition is only transiently present after retrieval.
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.
Resumo:
The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem but all nonlinear processes, both Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ. The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.