22 resultados para sparse Bayesian regression

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a Bayesian framework for regression problems, which covers areas which are usually dealt with by function approximation. An online learning algorithm is derived which solves regression problems with a Kalman filter. Its solution always improves with increasing model complexity, without the risk of over-fitting. In the infinite dimension limit it approaches the true Bayesian posterior. The issues of prior selection and over-fitting are also discussed, showing that some of the commonly held beliefs are misleading. The practical implementation is summarised. Simulations using 13 popular publicly available data sets are used to demonstrate the method and highlight important issues concerning the choice of priors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The principled statistical application of Gaussian random field models used in geostatistics has historically been limited to data sets of a small size. This limitation is imposed by the requirement to store and invert the covariance matrix of all the samples to obtain a predictive distribution at unsampled locations, or to use likelihood-based covariance estimation. Various ad hoc approaches to solve this problem have been adopted, such as selecting a neighborhood region and/or a small number of observations to use in the kriging process, but these have no sound theoretical basis and it is unclear what information is being lost. In this article, we present a Bayesian method for estimating the posterior mean and covariance structures of a Gaussian random field using a sequential estimation algorithm. By imposing sparsity in a well-defined framework, the algorithm retains a subset of “basis vectors” that best represent the “true” posterior Gaussian random field model in the relative entropy sense. This allows a principled treatment of Gaussian random field models on very large data sets. The method is particularly appropriate when the Gaussian random field model is regarded as a latent variable model, which may be nonlinearly related to the observations. We show the application of the sequential, sparse Bayesian estimation in Gaussian random field models and discuss its merits and drawbacks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sheer volume of citizen weather data collected and uploaded to online data hubs is immense. However as with any citizen data it is difficult to assess the accuracy of the measurements. Within this project we quantify just how much data is available, where it comes from, the frequency at which it is collected, and the types of automatic weather stations being used. We also list the numerous possible sources of error and uncertainty within citizen weather observations before showing evidence of such effects in real data. A thorough intercomparison field study was conducted, testing popular models of citizen weather stations. From this study we were able to parameterise key sources of bias. Most significantly the project develops a complete quality control system through which citizen air temperature observations can be passed. The structure of this system was heavily informed by the results of the field study. Using a Bayesian framework the system learns and updates its estimates of the calibration and radiation-induced biases inherent to each station. We then show the benefit of correcting for these learnt biases over using the original uncorrected data. The system also attaches an uncertainty estimate to each observation, which would provide real world applications that choose to incorporate such observations with a measure on which they may base their confidence in the data. The system relies on interpolated temperature and radiation observations from neighbouring professional weather stations for which a Bayesian regression model is used. We recognise some of the assumptions and flaws of the developed system and suggest further work that needs to be done to bring it to an operational setting. Such a system will hopefully allow applications to leverage the additional value citizen weather data brings to longstanding professional observing networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generalized linear regression models. We provide insights into the dependence of the error bars on the location of the data points and we derive an upper bound on the true error bars in terms of the contributions from individual data points which are themselves easily evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years there has been an increased interest in applying non-parametric methods to real-world problems. Significant research has been devoted to Gaussian processes (GPs) due to their increased flexibility when compared with parametric models. These methods use Bayesian learning, which generally leads to analytically intractable posteriors. This thesis proposes a two-step solution to construct a probabilistic approximation to the posterior. In the first step we adapt the Bayesian online learning to GPs: the final approximation to the posterior is the result of propagating the first and second moments of intermediate posteriors obtained by combining a new example with the previous approximation. The propagation of em functional forms is solved by showing the existence of a parametrisation to posterior moments that uses combinations of the kernel function at the training points, transforming the Bayesian online learning of functions into a parametric formulation. The drawback is the prohibitive quadratic scaling of the number of parameters with the size of the data, making the method inapplicable to large datasets. The second step solves the problem of the exploding parameter size and makes GPs applicable to arbitrarily large datasets. The approximation is based on a measure of distance between two GPs, the KL-divergence between GPs. This second approximation is with a constrained GP in which only a small subset of the whole training dataset is used to represent the GP. This subset is called the em Basis Vector, or BV set and the resulting GP is a sparse approximation to the true posterior. As this sparsity is based on the KL-minimisation, it is probabilistic and independent of the way the posterior approximation from the first step is obtained. We combine the sparse approximation with an extension to the Bayesian online algorithm that allows multiple iterations for each input and thus approximating a batch solution. The resulting sparse learning algorithm is a generic one: for different problems we only change the likelihood. The algorithm is applied to a variety of problems and we examine its performance both on more classical regression and classification tasks and to the data-assimilation and a simple density estimation problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regression problems are concerned with predicting the values of one or more continuous quantities, given the values of a number of input variables. For virtually every application of regression, however, it is also important to have an indication of the uncertainty in the predictions. Such uncertainties are expressed in terms of the error bars, which specify the standard deviation of the distribution of predictions about the mean. Accurate estimate of error bars is of practical importance especially when safety and reliability is an issue. The Bayesian view of regression leads naturally to two contributions to the error bars. The first arises from the intrinsic noise on the target data, while the second comes from the uncertainty in the values of the model parameters which manifests itself in the finite width of the posterior distribution over the space of these parameters. The Hessian matrix which involves the second derivatives of the error function with respect to the weights is needed for implementing the Bayesian formalism in general and estimating the error bars in particular. A study of different methods for evaluating this matrix is given with special emphasis on the outer product approximation method. The contribution of the uncertainty in model parameters to the error bars is a finite data size effect, which becomes negligible as the number of data points in the training set increases. A study of this contribution is given in relation to the distribution of data in input space. It is shown that the addition of data points to the training set can only reduce the local magnitude of the error bars or leave it unchanged. Using the asymptotic limit of an infinite data set, it is shown that the error bars have an approximate relation to the density of data in input space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bayesian analysis of neural networks is difficult because the prior over functions has a complex form, leading to implementations that either make approximations or use Monte Carlo integration techniques. In this paper I investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis to be carried out exactly using matrix operations. The method has been tested on two challenging problems and has produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the dependence of Bayesian error bars on the distribution of data in input space. For generalized linear regression models we derive an upper bound on the error bars which shows that, in the neighbourhood of the data points, the error bars are substantially reduced from their prior values. For regions of high data density we also show that the contribution to the output variance due to the uncertainty in the weights can exhibit an approximate inverse proportionality to the probability density. Empirical results support these conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixture Density Networks (MDNs) are a well-established method for modelling the conditional probability density which is useful for complex multi-valued functions where regression methods (such as MLPs) fail. In this paper we extend earlier research of a regularisation method for a special case of MDNs to the general case using evidence based regularisation and we show how the Hessian of the MDN error function can be evaluated using R-propagation. The method is tested on two data sets and compared with early stopping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this paper is to provide a tutorial on regression with Gaussian processes. We start from Bayesian linear regression, and show how by a change of viewpoint one can see this method as a Gaussian process predictor based on priors over functions, rather than on priors over parameters. This leads in to a more general discussion of Gaussian processes in section 4. Section 5 deals with further issues, including hierarchical modelling and the setting of the parameters that control the Gaussian process, the covariance functions for neural network models and the use of Gaussian processes in classification problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world datasets indicate the efficiency of the approach.