135 resultados para solitons
em Aston University Research Archive
Resumo:
It is shown, through numerical simulations, that by using a combination of dispersion management and periodic saturable absorption it is possible to transmit solitonlike pulses with greatly increased energy near to the zero net dispersion wavelength. This system is shown to support the stable propagation of solitons over transoceanic distances for a wide range of input powers.
Resumo:
The WDM properties of dispersion managed (DM) solitons and the reduction in Gordon-Haus jitter means that it is possible to contemplate multiple channels each at 10 Gbit/s for transoceanic distances without the need for elaborate soliton control. This paper will concentrate on fundamental principles of DM solitons, but will use these principles to indicate optimum maps for future high-speed soliton systems.
Resumo:
Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
This thesis investigates the feasibility of soliton transmission at 1150nm over standard fibre. This is done using a dispersion compensating fibre module in each amplifier span to compensate for the high dispersion. The basic principles of soliton propagation in optical fibre are discussed within this thesis, followed by an introduction to advantages of dispersion management. In the experimental chapter single channel transmission results are presented in 10Gbit/s and 40Gbit/s. At 10Gbit/s the effects of dispersion management on the power dispersion relationship for solitons are investigated. The detrimental effects of soliton-soliton interactions, which are increased due to the greater overlap breathing solitons are discussed. A technique for reducing the soliton-soliton interactions through amplifier positioning is presented as a solution to this problem. The experiments demonstrate the feasibility of using standard fibre for transmission over trans-oceanic distances at 10Gbit/s. The 40Gbit/s experiment demonstrates transmission over sufficient distance for an terrestrial system. Also contained within this thesis are experimental results showing transmission of solitons over dispersion shifted fibre using a novel technique that makes use of the non-linear polarisation rotation of the soliton in the fibre. This is used to generate the effect of saturable absorption, allowing transmission distances of 200,000km to be achieved.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
This thesis presents the results of numerical modelling of ultra high-speed transmission using DM solitons. The theory of propagation in optical fibres is presented with specific reference to optical communication systems. This theory is then expanded to. incorporate dispersion-managed transmission and the dispersion managed soliton. The first part of this work focuses on ultra high-speed dispersion managed soliton propagation in short period dispersion maps. Initially, the cbaracteristics .of dispersion managed soliton propagation in short period dispersion maps are contrasted to those of the more conventional dispersion managed regime. These properties are then utilised to investigate transmission at single channel data rates of 80 Gbit/s, 160 Gbit/s and 320 Gbit/s. For all three data rates, the tolerable limits for transmission over 1000 km, 3000 km and·transoceanic distances are defined. A major limitation of these higher bjt rate systems arises from the problem of noise-induced interactions, which is where the.accumulation of timing jitter causes neighbouring dispersion-managed solitons to interact. In addition, the systems become more sensitive to initial conditions as the data rate increases, .. The second part of the work focuses on contrasting the performance of a range of propagation regimes, from quasi-linear through to soliton-like propagation at 40 Gbit/s for both single channel and WDM dispersion managed transmission. The results indicated that whilst the optimal single channel performance was achieved for soliton-like propagation, the optimal WDM performance was achieved for propagation regime that lay between quasi-linear and soliton-like.
Resumo:
This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background.
Resumo:
We extend the theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fiber lasers. Dissipative structures exist at high map strengths, leading to the generation of stable, short pulses with high energy. Two types of intramap pulse evolution are observed depending on the net cavity dispersion. These are characterized by a reduced model, and semianalytical solutions are obtained.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.