10 resultados para solid oxide fuel cell

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rolls-Royce fuel cell systems is developing megawatt scale power systems based on solid oxide fuel cell technology. The hybrid design promises to meet challenging energy efficiency, cost and performance targets in a grid friendly fashion. Analysis and testing to date indicate that those targets can be met and enable a wealth of fuel cell applications to meet customer and existing grid and modern grid requirements. Working with a global development team, a series of laboratory tests and evaluations are completed and future field test and evaluation and demonstration planned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of calcium hydroxide for scavenging zincate species is demonstrated to be a highly effective approach for increasing the electrolyte capacity and improving the performance of the zinc-air fuel cell system. A fundamental approach is established in this study to quantify the formation of calcium zincate as the product of scavenging and the amount of water compensation necessary for optimal performance. The good agreement between predicted and experimental results proves the validity of the proposed theoretical approach. By applying the results of theoretical predictions, both the electrolyte capacity and the cell longevity have been increased by more than 40%. It is also found that, using Ca(OH)2 to scavenge zincate species in concentrated KOH solutions, affects mostly the removal of zincate, rather than ZnO, from the electrolyte, whereas the presence of excess, free, mobile H2O plays a key role in dissolving ZnO and forming zincate. The results obtained in this study demonstrate that the proposed approach can widely and effectively be applied to all zinc-air cell systems during their discharge cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.