6 resultados para slowly varying envelope approximation
em Aston University Research Archive
Resumo:
Online model order complexity estimation remains one of the key problems in neural network research. The problem is further exacerbated in situations where the underlying system generator is non-stationary. In this paper, we introduce a novelty criterion for resource allocating networks (RANs) which is capable of being applied to both stationary and slowly varying non-stationary problems. The deficiencies of existing novelty criteria are discussed and the relative performances are demonstrated on two real-world problems : electricity load forecasting and exchange rate prediction.
Resumo:
The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.
Resumo:
Interferometric sensors for slowly varying measurands, such as temperature or pressure, require a long term frequency stability of the source. We describe a system for frequency locking a laser diode to an atomic transition in a hollow cathode lamp using the optogalvanic effect.
Resumo:
We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged.
Resumo:
Pulses with an envelope in the form of the Airy function are obtained using Green's functions in 1D and 2D in time domain. Interaction of such pulses with a dielectric layer is investigated and expressions for reflected and transmitted pulses are obtained. © 2012 EUROPEAN MICROWAVE ASSOC.
Resumo:
It is shown that an electromagnetic wave equation in time domain is reduced in paraxial approximation to an equation similar to the Schrodinger equation but in which the time and space variables play opposite roles. This equation has solutions in form of time-varying pulses with the Airy function as an envelope. The pulses are generated by a source point with an Airy time varying field and propagate in vacuum preserving their shape and magnitude. The motion is according to a quadratic law with the velocity changing from infinity at the source point to zero in infinity. These one-dimensional results are extended to the 3D+time case when a similar Airy-Bessel pulse is excited by the field at a plane aperture. The same behaviour of the pulses, the non-diffractive preservation and their deceleration, is found. © 2011 IEEE.