3 resultados para size tolerance

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the evolution of radiation damage and changes in hardness of sputter-deposited Cu/V nanolaminates upon room temperature helium ion irradiation. As the individual layer thickness decreases from 200 to 5 nm, helium bubble density and radiation hardening both decrease. The magnitude of radiation hardening becomes negligible for individual layer thickness of 2.5 nm or less. These observations indicate that nearly immiscible Cu/V interface can effectively absorb radiation-induced point defects and reduce their concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interface effects on ion-irradiation tolerance properties are investigated in nanolayered TiN/AlN films with individual layer thickness varied from 5 nm to 50 nm, prepared by pulsed laser deposition. Evolution of the microstructure and hardness of the multilayer films are examined on the specimens before and after He ion-implantation to a fluence of 4 × 10 m at 50 keV. The suppression of amorphization in AlN layers and the reduction of radiation-induced softening are observed in all nanolayer films. A clear size-dependent radiation tolerance characteristic is observed in the nanolayer films, i.e., the samples with the optimum layer thickness from 10 nm to 20 nm show the best ion irradiation tolerance properties, and a critical layer thickness of more than 5 nm is necessary to prevent severe intermixing. This study suggests that both the interface characteristics and the critical length scale (layer thickness) contribute to the reduction of the radiation-induced damages in nitride-based ceramic materials. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. The purpose of this study was to evaluate the potential of the portable Grand Seiko FR-5000 autorefractor to allow objective, continuous, open-field measurement of accommodation and pupil size for the investigation of the visual response to real-world environments and changes in the optical components of the eye. METHODS. The FR-5000 projects a pair of infrared horizontal and vertical lines on either side of fixation, analyzing the separation of the bars in the reflected image. The measurement bars were turned on permanently and the video output of the FR-5000 fed into a PC for real-time analysis. The calibration between infrared bar separation and the refractive error was assessed over a range of 10.0 D with a model eye. Tolerance to longitudinal instrument head shift was investigated over a ±15 mm range and to eye alignment away from the visual axis over eccentricities up to 25.0°. The minimum pupil size for measurement was determined with a model eye. RESULTS. The separation of the measurement bars changed linearly (r = 0.99), allowing continuous online analysis of the refractive state at 60 Hz temporal and approximately 0.01 D system resolution with pupils >2 mm. The pupil edge could be analyzed on the diagonal axes at the same rate with a system resolution of approximately 0.05 mm. The measurement of accommodation and pupil size were affected by eccentricity of viewing and instrument focusing inaccuracies. CONCLUSIONS. The small size of the instrument together with its resolution and temporal properties and ability to measure through a 2 mm pupil make it useful for the measurement of dynamic accommodation and pupil responses in confined environments, although good eye alignment is important. Copyright © 2006 American Academy of Optometry.