24 resultados para single polarization
em Aston University Research Archive
Resumo:
An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.
Resumo:
An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.
Resumo:
We have demonstrated a switchable dual wavelength fiber ring laser with a high degree of polarization output by using an intracavity 3-stage all fiber Lyot filter. The filter is formed by concatenating four 45° tilted fiber gratings separated by polarization maintaining fibers with a length ratio of 1:2:4 (20, 40, and 80 cm), giving a compact integrated configuration with reduced bandwidth. Switchable dual wavelength or single wavelength output at 1533.5 and 1563.3 nm has been achieved. The output lasing is considerably stable owing to the in-phase mode-selecting function of the multistage Lyot filter, and has a very high degree of polarization higher than 99.9%. © 1989-2012 IEEE.
Resumo:
We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with single-polarization output using an intra-cavity 45°-tilted fiber grating (45°-TFG). When the laser cavity fiber subjected to loading, the laser output is encoded with the load and can be measured and monitored by a power metre. A loading sensitivity as high as 0.033/ (kg·m-1) has been achieved using this laser. The experiment results clearly show that single polarization fiber laser may be developed to a low-cost high-sensitivity loading sensor system. © 2014 SPIE.
Resumo:
We experimentally demonstrate an all-fiber single-polarization dual-wavelength Yb-doped fiber laser passively mode-locked with a 45°-tilted fiber grating for the first time. Stable dual-wavelength operation exhibits double-rectangular spectral profile centered at 1033 and 1053 nm, respectively. The 3 dB bandwidth of each rectangular optical spectrum is estimated as 10 nm. The separation of two fundamental repetition rates is 6 kHz. By employing the 45° TFG with the polarization-dependent loss of 33 dB, output pulses with 27 dB polarization extinction ratio are implemented in the experiment. The single pulse centered at 1053 nm is researched by using a filter at the output port of the laser, and the experimental results denote that the output ps pulses are highly chirped. The formation mechanism of dual-wavelength operation is investigated.
Resumo:
We propose and demonstrate a single- and dual-wavelength switchable erbium-doped fiber laser (EDFL) by utilizing intracavity polarization selective filters based on tilted fiber gratings (TFGs). In the cavity, one 45° TFG functions as an in-fiber polarizer and the other 77° TFG is used as a fiber polarization dependent loss (PDL) filter. The combined polarization effect from these two TFGs enables the laser to switch between the single- and the dual-wavelength operation with a single-polarization state at room temperature. The laser output at each wavelength shows an optical signal-to-noise ratio (OSNR) of >60 dB, a side mode suppression ratio (SMSR) of >50 dB, and a polarization extinction ratio of ~35 dB. The proposed EDFL can give stable output under laboratory conditions.
Resumo:
We have proposed and demonstrated a fiber ring laser with single-polarization output using an intracavity 45°-tilted fiber grating (45°-TFG). The properties of the 45°-TFG have been investigated both theoretically and experimentally. The fiber ring laser incorporating the 45°-TFG has been systematically characterized, showing a significant improvement in the polarization extinction ratio (PER) and achieving a PER of >30 dB. The slope efficiencies of the ring laser with and without the 45°-TFG have been measured. This laser shows a very stable polarized output with a PER variation of less than 2 dB for 5 hours at laboratory conditions. In addition, we also demonstrated the tunability of the laser.
Resumo:
Error-free transmission of a single polarization optical time division multiplexed 40 Gbit/s dispersion managed pulse data stream over 1009 km has been achieved in dispersion-compensated standard (non-dispersion shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
It is shown by numerical simulations that a significant increase in the spectral density of a 40-Gb/s wavelength-division-multiplexing (WDM) system can be obtained by controlling the phase of adjacent WDM channels. These simulations are confirmed experimentally at 40 Gb/s using a coherent,comb source. This technique allows the spectral density of a nonreturn-to-zero WDM system to be increased from 0.4 to 1 b/s/Hz in a single polarization. Optical filter optimization is required to minimize power crosstalk, and appropriate strategies are discussed in this letter. Index Terms-Filtering, optical communication terminals, phase control, wavelength-division multiplexing (WDM).
Resumo:
In this letter, a novel phase noise estimation scheme has been proposed for coherent optical orthogonal frequency division multiplexing systems, the quasi-pilot-aided method. In this method, the phases of transmitted pilot subcarriers are deliberately correlated to the phases of data subcarriers. Accounting for this correlation in the receiver allows the required number of pilots needed for a sufficient estimation and compensation of phase noise to be reduced by a factor of 2 in comparison with the traditional pilot-aided phase noise estimation method. We carried out numerical simulation of a 40 Gb/s single polarization transmission system, and the outcome of the investigation indicates that by applying quasi-pilot-aided phase estimation, only four pilot subcarriers are needed for effective phase noise compensation. © 2014 IEEE.
Resumo:
This thesis presents a detailed numerical analysis, fabrication method and experimental investigation on 45º tilted fiber gratings (45º-TFGs) and excessively tilted fiber gratings (Ex-TFGs), and their applications in fiber laser and sensing systems. The one of the most significant contributions of the work reported in this thesis is that the 45º-TFGs with high polarization extinction ratio (PER) have been fabricated in single mode telecom and polarization maintaining (PM) fibers with spectral response covering three prominent optic communication and central wavelength ranges at 1060nm, 1310nm and 1550nm. The most achieved PERs for the 45º-TFGs are up to and greater than 35-50dB, which have reached and even exceeded many commercial in-fiber polarizers. It has been proposed that the 45º-TFGs of high PER can be used as ideal in-fiber polarizers for a wide range of fiber systems and applications. In addition, in-depth detailed theoretical models and analysis have been developed and systematic experimental evaluation has been conducted producing results in excellent agreement with theoretical modeling. Another important outcome of the research work is the proposal and demonstration of all fiber Lyot filters (AFLFs) implemented by utilizing two (for a single stage type) and more (for multi-stage) 45º-TFGs in PM fiber cavity structure. The detailed theoretical analysis and modelling of such AFLFs have also been carried out giving design guidance for the practical implementation. The unique function advantages of 45º-TFG based AFLFs have been revealed, showing high finesse multi-wavelength transmission of single polarization and wide range of tuneability. The temperature tuning results of AFLFs have shown that the AFLFs have 60 times higher thermal sensitivity than the normal FBGs, thus permitting thermal tuning rate of ~8nm/10ºC. By using an intra-cavity AFLF, an all fiber soliton mode locking laser with almost total suppression of siliton sidebands, single polarization output and single/multi-wavelength switchable operation has been demonstrated. The final significant contribution is the theoretical analysis and experimental verification on the design, fabrication and sensing application of Ex-TFGs. The Ex-TFG sensitivity model to the surrounding medium refractive index (SRI) has been developed for the first time, and the factors that affect the thermal and SRI sensitivity in relation to the wavelength range, tilt angle, and the size of cladding have been investigated. As a practical SRI sensor, an 81º-TFG UV-inscribed in the fiber with small (40μm) cladding radius has shown an SRI sensitivity up to 1180nm/RIU in the index of 1.345 range. Finally, to ensure single polarization detection in such an SRI sensor, a hybrid configuration by UV-inscribing a 45º-TFG and an 81º-TFG closely on the same piece of fiber has been demonstrated as a more advanced SRI sensing system.
Resumo:
We report a refractive index (RI) and liquid level sensing system based on a hybrid grating structure comprising of a 45° and an 81° tilted fiber gratings (TFGs) that have been inscribed into a single mode fiber in series. In this structure, the 45°-TFG is used as a polarizer to filter out the transverse electric (TE) component and enable the 81°-TFG operating at single polarization for RI and level sensing. The experiment results show a lower temperature cross-sensitivity, only about 7.33 pm/°C, and a higher RI sensitivity, being around 180 nm/RIU at RI=1.345 and 926 nm/RIU at RI=1.412 region, which are significantly improved in comparison with long period fiber gratings. The hybrid grating structure has also been applied as a liquid level sensor, showing 3.06 dB/mm linear peak ratio sensitivity.
Resumo:
In this paper, we demonstrate a novel fiber nonlinearity compensation technique for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) systems based on the transmission of phase-conjugated pilots (PCPs). In this scheme, a portion of OFDM subcarriers (up to 50%) is transmitted with its phase conjugates, which is used at the receiver to estimate the nonlinear distortions in the respective subcarriers and other subcarriers, which are not accompanied by PCPs. Simulation and experimental results show that by varying the PCP overhead, a performance improvement up to 4 dB can be achieved. In addition, the proposed technique can be effectively applied in both single polarization and polarization-division multiplexed systems, in both single channel and wavelength-division multiplexing systems, thus, offering highest flexibility in implementations.
Resumo:
We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with singlepolarization output using an intra-cavity 45°-tilted fiber grating. When the laser cavity fiber is subjected to loading, the laser output is encoded with the loading information that can be measured and monitored by a standard power meter. The achieved loading sensitivity is 0.033/kg • m-1 and 0.042/kg • m-1 for two different interaction lengths. The experimental results clearly show that such a single-polarization fiber laser may be commercially developed into a low-cost, high-sensitivity loading sensor system.
Resumo:
We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. © 2012 Optical Society of America.