12 resultados para single particle analysis
em Aston University Research Archive
Resumo:
This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. Graphical abstract: [Figure not available: see fulltext.] © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Resumo:
Cell population heterogeneity has attracted great interest for understanding the individual cellular performances in their response to external stimuli and in the production of targeted products. Physical characterization of single cells and analysis of dynamic gene expression, synthesized proteins, and cellular metabolites from one single cell are reviewed. Advanced techniques have been developed to achieve high-throughput and ultrahigh resolution or sensitivity. Single cell capture methods are discussed as well. How to make use of cellular heterogeneities for maximizing cellular productivity is still in the infant stage, and control strategies will be formulated after the causes for heterogeneity have been elucidated.
Resumo:
This paper describes the horizontal deflection behaviour of the streams of particles in paramagnetic fluids under a high-gradient superconducting magnetic field, which is the continued work on the exploration of particle magneto-Archimedes levitation. Based on the previous work on the horizontal deflection of a single particle, a glass box and collector had been designed to observe the movement of particle group in paramagnetic fluids. To get the exact separation efficiency, the method of "sink-float" involved the high density fluid polytungstate (dense medium separation) and MLA (Mineral Liberation Analyser) was performed. It was found that the particles were deflected and settled at certain positions on the container floor due to the combined forces of gravity and magneto-Archimedes forces as well as a lateral buoyancy (displacement) force. Mineral particles with different densities and susceptibilities could be deflected to different positions, thus producing groups of similar types of particles. The work described here, although in its infancy, could form the basis of new approach of separating particles based on a combination of susceptibility and density. © 2014 Elsevier B.V.
Resumo:
The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.
Resumo:
Particulate solids are complex redundant systems which consist of discrete particles. The interactions between the particles are complex and have been the subject of many theoretical and experimental investigations. Invetigations of particulate material have been restricted by the lack of quantitative information on the mechanisms occurring within an assembly. Laboratory experimentation is limited as information on the internal behaviour can only be inferred from measurements on the assembly boundary, or the use of intrusive measuring devices. In addition comparisons between test data are uncertain due to the difficulty in reproducing exact replicas of physical systems. Nevertheless, theoretical and technological advances require more detailed material information. However, numerical simulation affords access to information on every particle and hence the micro-mechanical behaviour within an assembly, and can replicate desired systems. To use a computer program to numerically simulate material behaviour accurately it is necessary to incorporte realistic interaction laws. This research programme used the finite difference simulation program `BALL', developed by Cundall (1971), which employed linear spring force-displacement laws. It was thus necessary to incorporate more realistic interaction laws. Therefore, this research programme was primarily concerned with the implementation of the normal force-displacement law of Hertz (1882) and the tangential force-displacement laws of Mindlin and Deresiewicz (1953). Within this thesis the contact mechanics theories employed in the program are developed and the adaptations which were necessary to incorporate these laws are detailed. Verification of the new contact force-displacement laws was achieved by simulating a quasi-static oblique contact and single particle oblique impact. Applications of the program to the simulation of large assemblies of particles is given, and the problems in undertaking quasi-static shear tests along with the results from two successful shear tests are described.
Resumo:
In coliphage MS2 RNA a long-distance interaction (LDI) between an internal segment of the upstream coat gene and the start region of the replicase gene prevents initiation of replicase synthesis in the absence of coat gene translation. Elongating ribosomes break up the repressor LDI and thus activate the hidden initiation site. Expression studies on partial MS2 cDNA clones identified base pairing between 1427-1433 and 1738-1744, the so-called Min Jou (MJ) interaction, as the molecular basis for the long-range coupling mechanism. Here, we examine the biological significance of this interaction for the control of replicase gene translation. The LDI was disrupted by mutations in the 3'-side and the evolutionary adaptation was monitored upon phage passaging. Two categories of pseudorevertants emerged. The first type had restored the MJ interaction but not necessarily the native sequence. The pseudorevertants of the second type acquired a compensatory substitution some 80 nt downstream of the MJ interaction that stabilizes an adjacent LDI. In one examined case we confirmed that the second site mutations had restored coat-replicase translational coupling. Our results show the importance of translational control for fitness of the phage. They also reveal that the structure that buries the replicase start extends to structure elements bordering the MJ interaction.
Resumo:
A new surface analysis technique has been developed which has a number of benefits compared to conventional Low Energy Ion Scattering Spectrometry (LEISS). A major potential advantage arising from the absence of charge exchange complications is the possibility of quantification. The instrumentation that has been developed also offers the possibility of unique studies concerning the interaction between low energy ions and atoms and solid surfaces. From these studies it may also be possible, in principle, to generate sensitivity factors to quantify LEISS data. The instrumentation, which is referred to as a Time-of-Flight Fast Atom Scattering Spectrometer has been developed to investigate these conjecture in practice. The development, involved a number of modifications to an existing instrument, and allowed samples to be bombarded with a monoenergetic pulsed beam of either atoms or ions, and provided the capability to analyse the spectra of scattered atoms and ions separately. Further to this a system was designed and constructed to allow incident, exit and azimuthal angles of the particle beam to be varied independently. The key development was that of a pulsed, and mass filtered atom source; which was developed by a cyclic process of design, modelling and experimentation. Although it was possible to demonstrate the unique capabilities of the instrument, problems relating to surface contamination prevented the measurement of the neutralisation probabilities. However, these problems appear to be technical rather than scientific in nature, and could be readily resolved given the appropriate resources. Experimental spectra obtained from a number of samples demonstrate some fundamental differences between the scattered ion and neutral spectra. For practical non-ordered surfaces the ToF spectra are more complex than their LEISS counterparts. This is particularly true for helium scattering where it appears, in the absence of detailed computer simulation, that quantitative analysis is limited to ordered surfaces. Despite this limitation the ToFFASS instrument opens the way for quantitative analysis of the 'true' surface region to a wider range of surface materials.
Resumo:
Particle impacts are of fundamental importance in many areas and there has been a renewed interest in research on particle impact problems. A comprehensive investigation of the particle impact problems, using finite element (FE) methods, is presented in this thesis. The capability of FE procedures for modelling particle impacts is demonstrated by excellent agreements between FE analysis results and previous theoretical, experimental and numerical results. For normal impacts of elastic particles, it is found that the energy loss due to stress wave propagation is negligible if it can reflect more than three times during the impact, for which Hertz theory provides a good prediction of impact behaviour provided that the contact deformation is sufficiently small. For normal impact of plastic particles, the energy loss due to stress wave propagation is also generally negligible so that the energy loss is mainly due to plastic deformation. Finite-deformation plastic impact is addressed in this thesis so that plastic impacts can be categorised into elastic-plastic impact and finite-deformation plastic impact. Criteria for the onset of finite-deformation plastic impacts are proposed in terms of impact velocity and material properties. It is found that the coefficient of restitution depends mainly upon the ratio of impact velocity to yield Vni/Vy0 for elastic-plastic impacts, but it is proportional to [(Vni/Vy0)*(Y/E*)]-1/2, where Y /E* is the representative yield strain for finite-deformation plastic impacts. A theoretical model for elastic-plastic impacts is also developed and compares favourably with FEA and previous experimental results. The effect of work hardening is also investigated.
Resumo:
Due to the failure of PRARE the orbital accuracy of ERS-1 is typically 10-15 cm radially as compared to 3-4cm for TOPEX/Poseidon. To gain the most from these simultaneous datasets it is necessary to improve the orbital accuracy of ERS-1 so that it is commensurate with that of TOPEX/Poseidon. For the integration of these two datasets it is also necessary to determine the altimeter and sea state biases for each of the satellites. Several models for the sea state bias of ERS-1 are considered by analysis of the ERS-1 single satellite crossovers. The model adopted consists of the sea state bias as a percentage of the significant wave height, namely 5.95%. The removal of ERS-1 orbit error and recovery of an ERS-1 - TOPEX/Poseidon relative bias are both achieved by analysis of dual crossover residuals. The gravitational field based radial orbit error is modelled by a finite Fourier expansion series with the dominant frequencies determined by analysis of the JGM-2 co-variance matrix. Periodic and secular terms to model the errors due to atmospheric density, solar radiation pressure and initial state vector mis-modelling are also solved for. Validation of the dataset unification consists of comparing the mean sea surface topographies and annual variabilities derived from both the corrected and uncorrected ERS-1 orbits with those derived from TOPEX/Poseidon. The global and regional geographically fixed/variable orbit errors are also analysed pre and post correction, and a significant reduction is noted. Finally the use of dual/single satellite crossovers and repeat pass data, for the calibration of ERS-2 with respect to ERS-1 and TOPEX/Poseidon is shown by calculating the ERS-1/2 sea state and relative biases.
Resumo:
Atomic force microscopy has been used to study the surface properties of model spray dried powders. Phase imaging, nanoindentation and force modulation microscopy have differentiated between the different surface material properties of the particles, revealing a regular dispersion of soft, oil rich areas distributed across the particles' surface. Humidity and temperature cycling effects on the caking behavior of the particles have also been investigated, with significant morphology changes and onset of caking found to occur within relatively short periods of time.
Resumo:
Preliminary work is reported on 2-D and 3-D microstructures written directly with a Yb:YAG 1026 nm femtosecond (fs) laser on bulk chemical vapour deposition (CVD) single-crystalline diamond. Smooth graphitic lines and other structures were written on the surface of a CVD diamond sample with a thickness of 0.7mm under low laser fluences. This capability opens up the opportunity for making electronic devices and micro-electromechanical structures on diamond substrates. The fabrication process was optimised through testing a range of laser energies at a 100 kHz repetition rate with sub-500fs pulses. These graphitic lines and structures have been characterised using optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Using these analysis techniques, the formation of sp2 and sp3 bonds is explored and the ratio between sp2 and sp3 bonds after fs laser patterning is quantified. We present the early findings from this study and characterise the relationship between the graphitic line formation and the different fs laser exposure conditions. © 2012 Taylor & Francis.
Resumo:
We present an experimental and numerical study of transversely loaded uniform fibre-Bragg gratings. A novel loading configuration is described, producing pressure-induced spectral holes in an initially strong uniform grating. The birefringence properties of these gratings are analysed. It is shown that the frequency splitting of the two spectral holes, corresponding to two orthogonal polarisation states, can be adjusted precisely using this loading configuration. We finally demonstrate a new and simple scheme to induce multiple spectral holes in the stop-band. © 2003 Elsevier Science B.V. All rights reserved.