239 resultados para single mode fiber
em Aston University Research Archive
Resumo:
We present a technique for suppressing cladding-mode coupling loss in fiber Bragg grating fabrication. Suppression of cladding-modes down to 0.2 dB in a Bragg grating of 18dB reflectivity has been achieved in hydrogen-loaded standard single-mode fiber.
Resumo:
Concatenated single-mode-multimode-single-mode (SMS) structures are demonstrated as functional sensing platforms. The devices are fabricated by periodically inserting micrometric sections of multimode optical fiber (MMF) in a single-mode fiber (SMF). The periodic change of the core diameter produces a single strong resonant transmission notch, tunable in the wavelength range from 1200 to 1600 nm. It was found that the position of the notch changed with temperature and refractive index. The devices introduced here are highly compact (length less than 5 mm), simple to fabricate and robust; hence, they are adequate for diverse sensing applications. © 2013 The Japan Society of Applied Physics.
Resumo:
Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements. (C) 2010 Optical Society of America
Resumo:
By spectral analysis, and using joint time-frequency representations, we present the theoretical basis to design invariant band-limited Airy pulses with an arbitrary degree of robustness, and an arbitrary range of single mode fiber chromatic dispersion. The numerically simulated examples confirm the theoretically predicted pulse partial invariance in the propagation of the pulse in the fiber.
Resumo:
We report on the effective side detection of radiation-mode out-coupling from blazed fiber Bragg gratings (BFBGs) fabricated in single-mode fiber (SMF) and multimode fiber (MMF). The far-field radiation power distribution from BFBGs have been measured achieving a high spatial-spectral resolution (0.17 mm/nm). We have also investigated comparatively the transmission-loss characteristics of BFBGs in both fiber types, fabricated using phase-mask and holographic inscription techniques. Our results reveal clearly that the radiation out-coupling from BFBGs is significantly stronger and spectrally more confined in MMF than in SMF.
Resumo:
We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131±3×105 rad m-1 and the temperature sensitivity is -212±26 rad m-1 K-1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties.
Resumo:
Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.
Resumo:
We present the first demonstration of a tunable FBG device in POF utilizing thin-film resistive heater deposited on the fiber. A wavelength shift of 2nm, wavelength/power coefficient of -13.4pm/mW and T = 1.7s-1 are achieved.
Resumo:
We present what is to our knowledge the first demonstration of a tunable fiber Bragg grating device in polymer optical fiber that utilizes a thin-film resistive heater deposited on the surface of the fiber. The polymer fiber was coated via photochemical deposition of a Pd/Cu metallic layer with a procedure induced by vacuum-ultraviolet radiation at room temperature. The resulting device, when wavelength tuned via joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of-13.4 pm/mW, and a time constant of 1.7 s-1. © 2007 Optical Society of America.
Resumo:
We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.
Resumo:
We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131±3 × 105 rad m-1 and the temperature sensitivity is -212±26 rad m -1 K-1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties. © 2005 Optical Society of America.
Resumo:
We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/µstrain, and the temperature sensitivity was -60 pm/°C. This is the first 870nm FBG and the first demonstration of a negative temperature response for the TOPAS FBG, for which earlier results have indicated a positive temperature response. The relatively low material loss of the fiber at this wavelength compared to that at longer wavelengths will considerably enhance the potential utility of the TOPAS FBG.
Resumo:
Microchannels are fabricated into conventional single-mode fibers by femtosecond laser processing and chemical etching. Fabrication limitations imposed by the fiber geometry are highlighted and resolved through a simple technique without compromising fabrication flexibility. A microfluidic fiber device consisting of a 4 μm wide microchannel that intersects the fiber core for refractive index sensing is further demonstrated. © 2006 Optical Society of America.
Resumo:
We examined methods of controlling the pulse duration, spectral width and wavelength of the output from an all-fiber Yb laser mode-locked by carbon nanotubes. It is shown that a segment of polarization maintaining (PM) fiber inserted into a standard single mode fiber based laser cavity can function as a spectral selective filter. Adjustment of the length of the PM fiber from 1 to 2 m led to a corresponding variation in the pulse duration from 2 to 3.8 ps, the spectral bandwidth of the laser output changes from 0.15 to 1.26 nm. Laser output wavelength detuning within up to 5 nm was demonstrated with a fixed length of the PM fiber by adjustment of the polarization controller. © 2012 Optical Society of America.
Resumo:
A long-period grating (LPG) was written into a progressive three-layered single-mode fiber that was embedded into a flexible platform as a curvature sensor. The spectral location and profile of the LPGs were unaltered after implantation in the platform. The curvature sensitivity was 3.747 nm m with a resolution of ± 1.1 × 10-2 m-1. The bend sensor is intended to be part of a respiratory monitoring system and was tested on a resuscitation training manikin. © 2003 society of Photo-Optical Instrumentation Engineers.