2 resultados para single event upset

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The auditory evoked N1m-P2m response complex presents a challenging case for MEG source-modelling, because symmetrical, phase-locked activity occurs in the hemispheres both contralateral and ipsilateral to stimulation. Beamformer methods, in particular, can be susceptible to localisation bias and spurious sources under these conditions. This study explored the accuracy and efficiency of event-related beamformer source models for auditory MEG data under typical experimental conditions: monaural and diotic stimulation; and whole-head beamformer analysis compared to a half-head analysis using only sensors from the hemisphere contralateral to stimulation. Event-related beamformer localisations were also compared with more traditional single-dipole models. At the group level, the event-related beamformer performed equally well as the single-dipole models in terms of accuracy for both the N1m and the P2m, and in terms of efficiency (number of successful source models) for the N1m. The results yielded by the half-head analysis did not differ significantly from those produced by the traditional whole-head analysis. Any localisation bias caused by the presence of correlated sources is minimal in the context of the inter-individual variability in source localisations. In conclusion, event-related beamformers provide a useful alternative to equivalent-current dipole models in localisation of auditory evoked responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the eye-catching advances in sensing technologies, smart water networks have been attracting immense research interest in recent years. One of the most overarching tasks in smart water network management is the reduction of water loss (such as leaks and bursts in a pipe network). In this paper, we propose an efficient scheme to position water loss event based on water network topology. The state-of-the-art approach to this problem, however, utilizes the limited topology information of the water network, that is, only one single shortest path between two sensor locations. Consequently, the accuracy of positioning water loss events is still less desirable. To resolve this problem, our scheme consists of two key ingredients: First, we design a novel graph topology-based measure, which can recursively quantify the "average distances" for all pairs of senor locations simultaneously in a water network. This measure will substantially improve the accuracy of our positioning strategy, by capturing the entire water network topology information between every two sensor locations, yet without any sacrifice of computational efficiency. Then, we devise an efficient search algorithm that combines the "average distances" with the difference in the arrival times of the pressure variations detected at sensor locations. The viable experimental evaluations on real-world test bed (WaterWiSe@SG) demonstrate that our proposed positioning scheme can identify water loss event more accurately than the best-known competitor.