43 resultados para similarity retrieval

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In April 2009, Google Images added a filter for narrowing search results by colour. Several other systems for searching image databases by colour were also released around this time. These colour-based image retrieval systems enable users to search image databases either by selecting colours from a graphical palette (i.e., query-by-colour), by drawing a representation of the colour layout sought (i.e., query-by-sketch), or both. It was comments left by readers of online articles describing these colour-based image retrieval systems that provided us with the inspiration for this research. We were surprised to learn that the underlying query-based technology used in colour-based image retrieval systems today remains remarkably similar to that of systems developed nearly two decades ago. Discovering this ageing retrieval approach, as well as uncovering a large user demographic requiring image search by colour, made us eager to research more effective approaches for colour-based image retrieval. In this thesis, we detail two user studies designed to compare the effectiveness of systems adopting similarity-based visualisations, query-based approaches, or a combination of both, for colour-based image retrieval. In contrast to query-based approaches, similarity-based visualisations display and arrange database images so that images with similar content are located closer together on screen than images with dissimilar content. This removes the need for queries, as users can instead visually explore the database using interactive navigation tools to retrieve images from the database. As we found existing evaluation approaches to be unreliable, we describe how we assessed and compared systems adopting similarity-based visualisations, query-based approaches, or both, meaningfully and systematically using our Mosaic Test - a user-based evaluation approach in which evaluation study participants complete an image mosaic of a predetermined target image using the colour-based image retrieval system under evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to the rise in the volume of literature, problems arise in the retrieval of required information. Various retrieval strategies have been proposed, but most of that are not flexible enough for their users. Specifically, most of these systems assume that users know exactly what they are looking for before approaching the system, and that users are able to precisely express their information needs according to l aid- down specifications. There has, however, been described a retrieval program THOMAS which aims at satisfying incompletely- defined user needs through a man- machine dialogue which does not require any rigid queries. Unlike most systems, Thomas attempts to satisfy the user's needs from a model which it builds of the user's area of interest. This model is a subset of the program's "world model" - a database in the form of a network where the nodes represent concepts since various concepts have various degrees of similarities and associations, this thesis contends that instead of models which assume equal levels of similarities between concepts, the links between the concepts should have values assigned to them to indicate the degree of similarity between the concepts. Furthermore, the world model of the system should be structured such that concepts which are related to one another be clustered together, so that a user- interaction would involve only the relevant clusters rather than the entire database such clusters being determined by the system, not the user. This thesis also attempts to link the design work with the current notion in psychology centred on the use of the computer to simulate human cognitive processes. In this case, an attempt has been made to model a dialogue between two people - the information seeker and the information expert. The system, called Thomas-II, has been implemented and found to require less effort from the user than Thomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retrieval of wind fields from scatterometer observations has traditionally been separated into two phases; local wind vector retrieval and ambiguity removal. Operationally, a forward model relating wind vector to backscatter is inverted, typically using look up tables, to retrieve up to four local wind vector solutions. A heuristic procedure, using numerical weather prediction forecast wind vectors and, often, some neighbourhood comparison is then used to select the correct solution. In this paper we develop a Bayesian method for wind field retrieval, and show how a direct local inverse model, relating backscatter to wind vector, improves the wind vector retrieval accuracy. We compare these results with the operational U.K. Meteorological Office retrievals, our own CMOD4 retrievals and a neural network based local forward model retrieval. We suggest that the neural network based inverse model, which is extremely fast to use, improves upon current forward models when used in a variational data assimilation scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jaccard has been the choice similarity metric in ecology and forensic psychology for comparison of sites or offences, by species or behaviour. This paper applies a more powerful hierarchical measure - taxonomic similarity (s), recently developed in marine ecology - to the task of behaviourally linking serial crime. Forensic case linkage attempts to identify behaviourally similar offences committed by the same unknown perpetrator (called linked offences). s considers progressively higher-level taxa, such that two sites show some similarity even without shared species. We apply this index by analysing 55 specific offence behaviours classified hierarchically. The behaviours are taken from 16 sexual offences by seven juveniles where each offender committed two or more offences. We demonstrate that both Jaccard and s show linked offences to be significantly more similar than unlinked offences. With up to 20% of the specific behaviours removed in simulations, s is equally or more effective at distinguishing linked offences than where Jaccard uses a full data set. Moreover, s retains significant difference between linked and unlinked pairs, with up to 50% of the specific behaviours removed. As police decision-making often depends upon incomplete data, s has clear advantages and its application may extend to other crime types. Copyright © 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conventional neural network approach to regression problems approximates the conditional mean of the output vector. For mappings which are multi-valued this approach breaks down, since the average of two solutions is not necessarily a valid solution. In this article mixture density networks, a principled method to model conditional probability density functions, are applied to retrieving Cartesian wind vector components from satellite scatterometer data. A hybrid mixture density network is implemented to incorporate prior knowledge of the predominantly bimodal function branches. An advantage of a fully probabilistic model is that more sophisticated and principled methods can be used to resolve ambiguities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conventional neural network approach to regression problems approximates the conditional mean of the output vector. For mappings which are multi-valued this approach breaks down, since the average of two solutions is not necessarily a valid solution. In this article mixture density networks, a principled method to model conditional probability density functions, are applied to retrieving Cartesian wind vector components from satellite scatterometer data. A hybrid mixture density network is implemented to incorporate prior knowledge of the predominantly bimodal function branches. An advantage of a fully probabilistic model is that more sophisticated and principled methods can be used to resolve ambiguities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence for both advantages and disadvantages in normal recognition of living over nonliving things. This paradox has been attributed to high levels of perceptual similarity within living categories having a different effect on performance in different contexts. However, since living things are intrinsically more similar to each other, previous studies could not determine whether the various category effects were due to perceptual similarity, or to other characteristics of living things. We used novel animal and vehicle stimuli that were matched for similarity to measure the influence of perceptual similarity in different contexts. We found that displaying highly similar objects in blocked sets reduced their perceived similarity, eliminating the detrimental effect on naming performance. Experiment 1 demonstrated a disadvantage for highly similar objects in name learning and name verification using mixed groups of similar and dissimilar animals and vehicles. Experiment 2 demonstrated no disadvantage for the same highly similar objects when they were blocked, e.g., similar animals presented alone. Thus, perceptual similarity, rather than other characteristics particular to living things, is affected by context, and could create apparent category effects under certain testing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.