3 resultados para signal reconstruction

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the design of electronic dispersion compensation (EDC) using full optical-field reconstruction in 10Gbit/s on-off keyed transmission systems limited by optical signal-to-noise ratio (OSNR). By effectively suppressing the impairment due to low- frequency component amplification in phase reconstruction, properly designing the transmission system configuration to combat fiber nonlinearity, and successfully reducing the vulnerability to thermal noise, a 4.8dB OSNR margin can be achieved for 2160km single-mode fiber transmission without any optical dispersion compensation. We also investigate the performance sensitivity of the scheme to various system parameters, and propose a novel method to greatly enhance the tolerance to differential phase misalignment of the asymmetric Mach-Zehnder interferometer. This numerical study provides important design guidelines which will enable full optical-field EDC to become a cost-effective dispersion compensation solution for future transparent optical networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally demonstrate the use of full-field electronic dispersion compensation (EDC) to achieve a bit error rate of 5 x 10(-5) at 22.3 dB optical signal-to-noise ratio for single-channel 10 Gbit/s on-off keyed signal after transmission over 496 km field-installed single-mode fibre with an amplifier spacing of 124 km. This performance is achieved by designing the EDC so as to avoid electronic amplification of the noise content of the signal during full-field reconstruction. We also investigate the tolerance of the system to key signal processing parameters, and numerically demonstrate that single-channel 2160 km single mode fibre transmission without in-line optical dispersion compensation can be achieved using this technique with 80 km amplifier spacing and optimized system parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose to increase residual carrier frequency offset tolerance based on short perfect reconstruction pulse shaping for coherent optical-orthogonal frequency division multiplexing. The proposed method suppresses the residual carrier frequency offset induced penalty at the receiver, without requiring any additional overhead and exhaustive signal processing. The Q-factor improvement contributed by the proposed method is 1.6 dB and 1.8 dB for time-frequency localization maximization and out-of-band energy minimization pulse shapes, respectively. Finally, the transmission span gain under the influence of residual carrier frequency offset is ̃62% with out-of-band energy minimization pulse shape. © 2014 Optical Society of America.