7 resultados para shuffle-exchange network
em Aston University Research Archive
Resumo:
The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.
Resumo:
We study the equilibrium states of energy functions involving a large set of real variables, defined on the links of sparsely connected networks, and interacting at the network nodes, using the cavity and replica methods. When applied to the representative problem of network resource allocation, an efficient distributed algorithm is devised, with simulations showing full agreement with theory. Scaling properties with the network connectivity and the resource availability are found. © 2006 The American Physical Society.
Resumo:
In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.
Resumo:
In this paper the exchange rate forecasting performance of neural network models are evaluated against random walk and a range of time series models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore the parameters are chosen according to what the researcher considers to be the best. Such an approach, however, implies that the risk of making bad decisions is extremely high which could explain why in many studies neural network models do not consistently perform better than their time series counterparts. In this paper through extensive experimentation the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of performing well. Our results show that in general neural network models perform better than traditionally used time series models in forecasting exchange rates.
Resumo:
In this paper, the implementation aspects and constraints of the simplest network coding (NC) schemes for a two-way relay channel (TWRC) composed of a user equipment (mobile terminal), an LTE relay station (RS) and an LTE base station (eNB) are considered in order to assess the usefulness of the NC in more realistic scenarios. The information exchange rate gain (IERG), the energy reduction gain (ERG) and the resource utilization gain (RUG) of the NC schemes with and without subcarrier division duplexing (SDD) are obtained by computer simulations. The usefulness of the NC schemes are evaluated for varying traffic load levels, the geographical distances between the nodes, the RS transmit powers, and the maximum numbers of retransmissions. Simulation results show that the NC schemes with and without SDD, have the throughput gains 0.5% and 25%, the ERGs 7 - 12% and 16 - 25%, and the RUGs 0.5 - 3.2%, respectively. It is found that the NC can provide performance gains also for the users at the cell edge. Furthermore, the ERGs of the NC increase with the transmit power of the relay while the ERGs of the NC remain the same even when the maximum number of retransmissions is reduced.
Resumo:
We investigate knowledge exchange among commercial organizations, the rationale behind it, and its effects on the market. Knowledge exchange is known to be beneficial for industry, but in order to explain it, authors have used high-level concepts like network effects, reputation, and trust. We attempt to formalize a plausible and elegant explanation of how and why companies adopt information exchange and why it benefits the market as a whole when this happens. This explanation is based on a multiagent model that simulates a market of software providers. Even though the model does not include any high-level concepts, information exchange naturally emerges during simulations as a successful profitable behavior. The conclusions reached by this agent-based analysis are twofold: 1) a straightforward set of assumptions is enough to give rise to exchange in a software market, and 2) knowledge exchange is shown to increase the efficiency of the market.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.