6 resultados para service adaptation
em Aston University Research Archive
Resumo:
This article examines the implementation of relationship marketing strategy based on a sample of business-to-business firms operating in Greece. Organizational resources, including a focus on learning and flexibility/adaptation in strategic planning, are demonstrated to be antecedents of effective relationship marketing strategies. The possession of these resources lead to superior customer performance (as measured by customer satisfaction and loyalty) and, ultimately, superior financial performance (as measured by profit levels, profit margin, and ROI). Our results provide support for the development of organizational resources that foster and enable relationship marketing in business-to-business environments since such resources are linked with improved firm performance. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Service-based systems that are dynamically composed at run time to provide complex, adaptive functionality are currently one of the main development paradigms in software engineering. However, the Quality of Service (QoS) delivered by these systems remains an important concern, and needs to be managed in an equally adaptive and predictable way. To address this need, we introduce a novel, tool-supported framework for the development of adaptive service-based systems called QoSMOS (QoS Management and Optimisation of Service-based systems). QoSMOS can be used to develop service-based systems that achieve their QoS requirements through dynamically adapting to changes in the system state, environment and workload. QoSMOS service-based systems translate high-level QoS requirements specified by their administrators into probabilistic temporal logic formulae, which are then formally and automatically analysed to identify and enforce optimal system configurations. The QoSMOS self-adaptation mechanism can handle reliability- and performance-related QoS requirements, and can be integrated into newly developed solutions or legacy systems. The effectiveness and scalability of the approach are validated using simulations and a set of experiments based on an implementation of an adaptive service-based system for remote medical assistance.
Resumo:
Service-based systems are applications built by composing pre-existing services. During design time and according to the specifications, a set of services is selected. Both, service providers and consumers exist in a service market that is constantly changing. Service providers continuously change their quality of services (QoS), and service consumers can update their specifications according to what the market is offering. Therefore, during runtime, the services are periodically and manually checked to verify if they still satisfy the specifications. Unfortunately, humans are overwhelmed with the degree of changes exhibited by the service market. Consequently, verification of the compliance specification and execution of the corresponding adaptations when deviations are detected cannot be carried out in a manual fashion. In this work, we propose a framework to enable online awareness of changes in the service market in both consumers and providers by representing them as active software agents. At runtime, consumer agents concretize QoS specifications according to the available market knowledge. Services agents are collectively aware of themselves and of the consumers' requests. Moreover, they can create and maintain virtual organizations to react actively to demands that come from the market. In this paper we show preliminary results that allow us to conclude that the creation and adaptation of service-based systems can be carried out by a self-organized service market system. © 2012 IEEE.
Resumo:
Requirements-aware systems address the need to reason about uncertainty at runtime to support adaptation decisions, by representing quality of services (QoS) requirements for service-based systems (SBS) with precise values in run-time queryable model specification. However, current approaches do not support updating of the specification to reflect changes in the service market, like newly available services or improved QoS of existing ones. Thus, even if the specification models reflect design-time acceptable requirements they may become obsolete and miss opportunities for system improvement by self-adaptation. This articles proposes to distinguish "abstract" and "concrete" specification models: the former consists of linguistic variables (e.g. "fast") agreed upon at design time, and the latter consists of precise numeric values (e.g. "2ms") that are dynamically calculated at run-time, thus incorporating up-to-date QoS information. If and when freshly calculated concrete specifications are not satisfied anymore by the current service configuration, an adaptation is triggered. The approach was validated using four simulated SBS that use services from a previously published, real-world dataset; in all cases, the system was able to detect unsatisfied requirements at run-time and trigger suitable adaptations. Ongoing work focuses on policies to determine recalculation of specifications. This approach will allow engineers to build SBS that can be protected against market-caused obsolescence of their requirements specifications. © 2012 IEEE.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
Two classes of software that are notoriously difficult to develop on their own are rapidly merging into one. This will affect every key service that we rely upon in modern society, yet a successful merge is unlikely to be achievable using software development techniques specific to either class. This paper explains the growing demand for software capable of both self-adaptation and high integrity, and advocates the use of a collection of "@runtime" techniques for its development, operation and management. We summarise early research into the development of such techniques, and discuss the remaining work required to overcome the great challenge of self-adaptive high-integrity software. © 2011 ACM.