2 resultados para sequential niche technique
em Aston University Research Archive
Resumo:
This thesis is concerned with the study of a non-sequential identification technique, so that it may be applied to the identification of process plant mathematical models from process measurements with the greatest degree of accuracy and reliability. In order to study the accuracy of the technique under differing conditions, simple mathematical models were set up on a parallel hybrid. computer and these models identified from input/output measurements by a small on-line digital computer. Initially, the simulated models were identified on-line. However, this method of operation was found not suitable for a thorough study of the technique due to equipment limitations. Further analysis was carried out in a large off-line computer using data generated by the small on-line computer. Hence identification was not strictly on-line. Results of the work have shovm that the identification technique may be successfully applied in practice. An optimum sampling period is suggested, together with noise level limitations for maximum accuracy. A description of a double-effect evaporator is included in this thesis. It is proposed that the next stage in the work will be the identification of a mathematical model of this evaporator using the teclmique described.
Resumo:
Current knowledge of the long-term, low dose effects of carbamate (CB) anti-cholinesterases on skeletal muscle or on the metabolism and regulation of the molecular forms of acetylcholinesterase (AChE) is limited. This is largely due to the reversible nature of these inhibitors and the subtle effects they induce which has generally made their study difficult and preliminary investigations were conducted to determine suitable study methods. A sequential extraction technique was used to rapidly analyse AChE molecular form activity at the mouse neuromuscular junction and also in peripheral parts of muscle fibres. AChE in the synaptic cleft involved in the termination of cholinergic transmission was successfully assessed by the assay method and by an alternative method using a correlation equation which represented the relationship between synaptic AChE and the prolongation of extra-cellular miniature endplate potentials. It was found that inhibition after in vivo Carbamate (CB) dosing could not be maintained during tissue analysis because CB-inhibited enzyme complexes decarbamoylated vary rapidly and could not be prevented even when maintained on ice. The methods employed did not therefore give a measure of inhibition but presented a profile of metabolic responses to continual, low dose CB treatment. Repetitive and continual infusion with low doses of the CBs: pyridostigmine and physostigmine induced a variety of effects on mouse skeletal muscle. Both compounds induced a mild myopathy in the mouse diaphragm during continual infusion which was characterised by endplate deformation without necrosis; such deformation persisted on termination of treatment but had recovered slightly 14 days later. Endplate and non-endplate AChE molecular forms displayed selective responses to CB treatment. During treatment endplate AChE was reduced whereas non-endplate AChE was largely unaffected, and after treatment, endplate AChE recovered, whereas non-endplate AChE was up-regulated. The mechanisms by which these responses become manifest are unclear but may be due to CB-induced effects on nerve-mediated muscle activity, neurotrophic factors or morphological and physiological changes which arise at the neuromuscular junction. It was concluded that, as well as inhibiting AChE, CBs also influence the metabolism and regulation of the enzyme and induce persistent endplate deformation; possible detrimental effects of long-term, low-dose determination requires further investigation.