3 resultados para sensitivity map

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel recursive-algorithm based maximum a posteriori probability (MAP) detector in spectrally-efficient coherent wavelength division multiplexing (CoWDM) systems, and investigate its performance in a 1-bit/s/Hz on-off keyed (OOK) system limited by optical-signal-to-noise ratio. The proposed method decodes each sub-channel using the signal levels not only of the particular sub-channel but also of its adjacent sub-channels, and therefore can effectively compensate deterministic inter-sub-channel crosstalk as well as inter-symbol interference arising from narrow-band filtering and chromatic dispersion (CD). Numerical simulation of a five-channel OOK-based CoWDM system with 10Gbit/s per channel using either direct or coherent detection shows that the MAP decoder can eliminate the need for phase control of each optical carrier (which is necessarily required in a conventional CoWDM system), and greatly relaxes the spectral design of the demultiplexing filter at the receiver. It also significantly improves back-to-back sensitivity and CD tolerance of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Vigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field. Documenting the natural history associated with continued VGB exposure is important when making decisions about the risk and benefits associated with the treatment. Due to its speed the Swedish Interactive Threshold Algorithm (SITA) has become the algorithm of choice when carrying out Full Threshold automated static perimetry. SITA uses prior distributions of normal and glaucomatous visual field behaviour to estimate threshold sensitivity. As the abnormal model is based on glaucomatous behaviour this algorithm has not been validated for VGB recipients. We aim to assess the clinical utility of the SITA algorithm for accurately mapping VGB attributed field loss. Methods: The sample comprised one randomly selected eye of 16 patients diagnosed with epilepsy, exposed to VGB therapy. A clinical diagnosis of VGB attributed visual field loss was documented in 44% of the group. The mean age was 39.3 years∈±∈14.5 years and the mean deviation was -4.76 dB ±4.34 dB. Each patient was examined with the Full Threshold, SITA Standard and SITA Fast algorithm. Results: SITA Standard was on average approximately twice as fast (7.6 minutes) and SITA Fast approximately 3 times as fast (4.7 minutes) as examinations completed using the Full Threshold algorithm (15.8 minutes). In the clinical environment, the visual field outcome with both SITA algorithms was equivalent to visual field examination using the Full Threshold algorithm in terms of visual inspection of the grey scale plots, defect area and defect severity. Conclusions: Our research shows that both SITA algorithms are able to accurately map visual field loss attributed to VGB. As patients diagnosed with epilepsy are often vulnerable to fatigue, the time saving offered by SITA Fast means that this algorithm has a significant advantage for use with VGB recipients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.