2 resultados para semi conducting polymers, electroluminescence, photovoltaics

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interpenetrating polymer networks (lPN's), have been defined as a combination of two polymers each in network form, at least one of which has been synthesised and / or crosslinked in the presence of the other. A semi-lPN, is formed when only one of the polymers in the system is crosslinked, the other being linear. lPN's have potential advantages over homogeneous materials presently used in biomedical applications, in that their composite nature gives them a useful combination of properties. Such materials have potential uses in the biomedical field, specifically for use in hard tissue replacements, rigid gas permeable contact lenses and dental materials. Work on simply two or three component systems in both low water containing lPN's supplemented by the study of hydrogels (water swollen hydrophilic polymers) can provide information useful in the future development of more complex systems. A range of copolymers have been synthesised using a variety of methacrylates and acrylates. Hydrogels were obtained by the addition of N-vinyl pyrrolidone to these copolymers. A selection of interpenetrants were incorporated into the samples and their effect on the copolymer properties was investigated. By studying glass transition temperatures, mechanical, surface, water binding and oxygen permeability properties samples were assessed for their suitability for use as biomaterials. In addition copolymers containing tris-(trimethylsiloxy)-y-methacryloxypropyl silane, commonly abbreviated to 'TRlS', have been investigated. This material has been shown to enhance oxygen permeability, a desirable property when considering the design of contact lenses. However, 'TRIS' has a low polar component of surface free energy and hence low wettability. Copolymerisation with a range of methacrylates has shown that significant increases in surface wettability can be obtained without a detrimental effect on oxygen permeability. To further enhance to surface wettability 4-methacryloxyethyl trimellitic anhydride was incorporated into a range of promising samples. This study has shown that by careful choice of monomers it is possible to synthesise polymers that possess a range of properties desirable in biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogels may be conveniently described as hydrophilic polymers that are swollen by, but do not dissolve in water. In this work a series of copolymer hydrogels and semi-interpenetrating polymer networks based on the monomers 2-hydroxyethyl methacrylate, N-vinyl pyrrolidone and N'N' dimethyl acrylamide, together with some less hydrophilic hydroxyalkyl acrylates and methacrylates have been synthesised. Variations in structure and composition have been correlated both with the total equilibrium water content of the resultant hydrogel and with the more detailed water binding behaviour, as revealed by differential scanning calorimetry studies. The water binding characteristics of the hydrogels were found to be primarily a function of the water structuring groups present in gel. The water binding abilities of these groups were, however, modified by steric effects. The mechanical properties of the hydrogels were also investigated. These were found to be dependent on both the polymer composition and the amount and nature of the water present in the gels. In biological systems, composite formation provides a means of producing strong, high water content materials. As an analogy with these systems hydrogel composites were prepared. In an initial study of these materials the water binding and mechanical properties of semi-interpenetrating polymer networks of N'N'dimethyl acrylamide with cellulosic type materials, with polyurethanes and with ester containing polymers were examined. A preliminary investigation of surface properties of both the copolymers and semi-interpenetrating polymer networks has been completed, using both contact angle measurements and anchorage dependent fibroblast cells. Measurable differences in surface properties attributable to structural variations in the polymers were detected by droplet techniques in the dehydrated state. However, in the hydrated state these differences were masked by the water in the gels. The use of cells enabled the underlying differences to be probed and the nature of the water structuring group was again found to be the dominant factor.